

Groundwater Quality and Level Trigger Assessment

for Vulcan South

September 2022

This report has been prepared solely for the benefit of Vitrinite Pty Ltd. Mining and Energy Technical Services Pty Ltd (METServe) accepts no liability for the use or interpretation of any information contained in this report for any other purpose other than intended, or for its use by any party other than the above named Client.

Document History and Status

Issue	Revision	Issued to	Qty	Date	Reviewed by
1	1 (Draft)	Internal	1	13/09/2022	Emerson Pollard
2	2 (Draft)	Internal	1	21/09/2022	L. Morgan / D. Plucknett
3	3 (Final)	Vitrinite	1	21/09/2022	Emerson Pollard

MET Serve Project Delivery System

23 September 2022
23 September 2022
00304786
Dave Moss
Vitrinite
Vulcan South
Groundwater Quality and Level Trigger Assessment
005
VI011

METSERVE

310 Edward Street Brisbane City QLD 4000

ABN 94 143 463 316

1		1
1.1	BACKGROUND	1
2	GROUNDWATER MONITORING NETWORK	2
3	GROUNDWATER LEVELS	4
3.1	Methodology	4
3.2	PROPOSED GROUNDWATER LEVEL TRIGGER VALUES	4
4	GROUNDWATER QUALITY	5
4.1	Methodology	5
4.1.1	Data collation and statistical analysis	5
4.1.2	Review of applicable water quality objectives	5
4.1.3	Development of Groundwater quality triggers	6
4.2.	GROUNDWATER QUALITY CHARACTERISTICS AND PROPOSED GROUNDWATER QUALITY TRIGGER VALUES	6
5	GROUNDWATER TRIGGERS SUITABILITY FOR MINE CLOSURE	9
6	CONCLUSION	0
7	REFERENCES	1

TABLES

Table 1	Vulcan South's Groundwater Monitoring Bore Construction Details	2
Table 2	Proposed Groundwater Level Trigger Values	4
Table 3	Proposed Groundwater Quality Trigger Values	8

FIGURES

Figure 1	Vulcan South Groundwater Monitoring Network	3
Figure 2	Piper Plot for Vulcan South Groundwater Monitoring Bores	7

APPENDICES

Appendix A	Groundwater Quality and Level Data	A
Appendix B	Groundwater Quality Statistics Summary	В
Appendix C	Groundwater Quality Trends	С

1 INTRODUCTION

Mining & Energy Technical Services Pty Ltd (METServe) has been engaged by Vitrinite Pty Ltd to prepare a groundwater quality and level trigger assessment to support an Environmental Authority (EA) application for Vulcan South (the Project). The Project is proposed to be developed by Vitrinite Pty Ltd., owner of Queensland Coking Coal Pty Ltd and QLD Coal Aust No.1 Pty Ltd, the proponents of the Project and subsequent EA applicants.

1.1 BACKGROUND

The Project is located immediately south of Vitrinite's Vulcan Coal Mine (VCM), located on ML700060, 40 km south of Moranbah in Queensland. The proposed MLA boundary (the Project area) abuts ML700060; however, proposed activities for Vulcan South and VCM will be implemented separately. The Vulcan hard coking coal target has been defined and selected for open cut development via three separate open cut pits that form the primary mining focus of the Project (i.e. Vulcan North pit, Vulcan Main pit, and Vulcan South pit). The Project will operate for approximately nine years, including primary rehabilitation works, following a two-year construction period. The Project will extract approximately 13.5 million tonnes (Mt) of Run of Mine (ROM) coal consisting predominantly of hard coking coal with an incidental thermal secondary product at a rate of up to 1.95 million tonnes per annum (Mtpa). The Project will target the Alex and multiple Dysart Lower coal seams. Truck and shovel mining operations will be employed to develop the pits.

Ex-pit waste rock dumps will be established prior to commencing in-pit dumping activities that will continue for the life of the operation. Ancillary infrastructure, including a ROM pad, modular coal handling and preparation plant (CHPP), rail loop and train load-out facility (TLO), Mine Infrastructure Area (MIA), offices, roads and surface water management infrastructure will be established to support the operation. In-pit dumping will fill the majority of the pit volumes during operations with the remaining final voids to be backfilled upon cessation of mining, resulting in the establishment of low waste rock dump landforms over the former pit areas. The initial Ex-pit waste rock dump will be rehabilitated in-situ.

The Project includes a small-scale highwall mining trial program in the north of the Project area. The trial will involve the establishment of four highwall mining benches across several hillsides to facilitate extraction of coal utilising a highwall miner. The highwall mining trial will target up to 750 kilotonnes (kt) of coal which will be transported by truck to the CHPP via a dedicated haul road. The highwall mining trial is scheduled to be completed within the first year of mining operations.

A groundwater monitoring network was established across the Project area in June 2019 to support the collection of baseline data for Vulcan South. Vulcan South's groundwater monitoring network consists of eight monitoring bores, whereby water level and quality are periodically monitored (see section 2 for further details).

2 GROUNDWATER MONITORING NETWORK

The Project's groundwater monitoring network consists of eight monitoring bores across the Project area. Bore details are outlined in **Table 1** and locations shown in **Figure 1**.

Monitoring location	Easting	Northing	Target formation	Casing height (m)	Casing elevation (mAHD)	Depth (mbgl)	Monitoring interval (mbgl)	Airlift yield (L/min)
MB01	625606	7529691	DLL coal seam	0.70	222.91	24.9	21.9 – 24.9	Dry
MB06	628119	7526476	Weathered Permian	0.70	214.61	24.6	21.6 – 24.6	Dry
MB07	628691	7526258	Weathered Permian	0.67	215.99	43.0	40.0 - 43.0	0.1
MB08	628092	7527015	Weathered Permian	0.70	212.24	24.0	21.0 – 24.0	Dry
MB09	629511	7525222	DLL coal seam	0.65	208.98	34.4	31.4 – 34.4	0.1
MB10	628123	7526469	DLL coal seam	0.70	214.60	40.3	37.3 - 40.3	< 0.1
MB11	627403	7527854	DLL coal seam	0.70	225.66	29.9	26.9 – 29.9	Dry
MB12	625251	7526409	Back Creek Group	0.66	241.43	38.2	32.2 – 38.2	1

Table 1 Vulcan South's Groundwater Monitoring Bore Construction Details

Notes: mAHD – meters Australian Height Datum mbgl – metres below ground level L/min – litres per minute

Groundwater monitoring bores MB01, MB06, MB08, and MB11 have been consistently dry since installation in 2019. Owing to this, no groundwater quality or level trigger limits have been developed for these dry bores.

Groundwater Quality and Level Trigger Assessment – Vulcan South

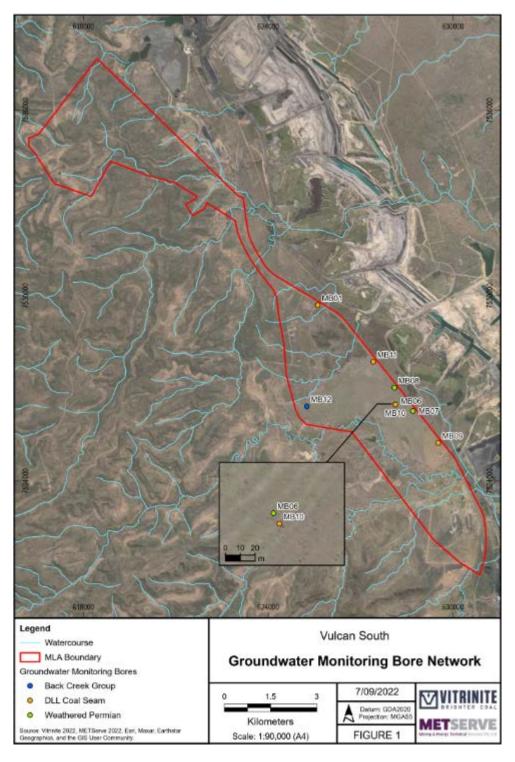


Figure 1 Vulcan South Groundwater Monitoring Network

3 GROUNDWATER LEVELS

3.1 METHODOLOGY

The methodology used to develop the proposed groundwater level trigger thresholds for Vulcan South included:

- determining the pre-mining baseline groundwater level for each monitoring bore;
- calculating the seasonal variation in groundwater levels for each monitoring bore; and
- extracting the predicted groundwater drawdown at the monitoring bore location for the bore's monitored formation from the numerical flow model (developed by hydrogeologist.com.au).

The pre-mining baseline for each monitoring bore was determined as the groundwater level seen in the latest groundwater level measurements collected in June 2022. The seasonal variation in groundwater levels recorded at each bore were also calculated using the variation between minimum and maximum measurements recorded over the pre-mining data collection period (June 2019 to June 2022).

Using the numerical model developed for the Project, predicted drawdowns within the bore's monitored geologic formation were extracted at each bore location (hydrogeologist.com.au, 2022). If a formation's predicted drawdown was to be limited / negligible at the monitoring bore's location, a conservative drawdown value of 0.2 m was applied (hydrogeologist.com.au, 2021). The numerical model indicates the largest maximum drawdown within the shallowest layer is the weathered Permian formation at MB07, followed by the DLL coal seam at both MB09 and MB10. The groundwater level trigger values were then calculated as the pre-mining baseline level minus the seasonal variation and predicted drawdown (see **Table 2** for values used in calculation).

3.2 PROPOSED GROUNDWATER LEVEL TRIGGER VALUES

The proposed groundwater level trigger thresholds are listed in **Table 2** below.

Monitoring location	Target formation	Pre-mining baseline level (mAHD)	Predicted formation drawdown (m)	Seasonal variation (m)	Groundwater level trigger threshold (mAHD)
MB07	Weathered Permian	180.01	10.96	0.91	168.14
MB09	DLL coal seam	181.38	5.23	0.53	175.63
MB10	DLL coal seam	182.66	6.47	0.52	175.67
MB12	Back Creek Group	215.83	0.2 ¹	2.49	213.14

Table 2Proposed Groundwater Level Trigger Values

Notes: mAHD – meters Australian Height Datum

¹ No drawdown predicted by the numerical model, hence 0.2 m drawdown value used.

4 GROUNDWATER QUALITY

4.1 METHODOLOGY

The methodology to determine the proposed groundwater quality trigger levels included:

- collating the available groundwater quality data from the groundwater monitoring bores;
- analysing the available groundwater data and developing summary statistics for each individual monitoring bore, and each geological formation monitored by the groundwater monitoring bores;
- comparing the summary statistics to ANZG (2018) guidelines and any published groundwater quality objectives associated with the local groundwater regime; and
- developing groundwater quality triggers that address the environmental protection requirements of an EA condition.

The following sections provide additional information on the methodology used to develop the proposed groundwater quality trigger values.

4.1.1 Data collation and statistical analysis

Vulcan South's groundwater monitoring network consists of eight monitoring bores; four of which have remained dry since installation in 2019 and have not been addressed in this assessment. In-line with the groundwater monitoring regime at the VCM, monthly water quality sampling was completed for the first four months post-install, decreasing to quarterly sampling thereafter. A total of 17 - 18 monitoring events have occurred at the Project's monitoring bores since June 2019.

Each groundwater sample collected was measured for field parameters in-situ (e.g pH, EC), as well as laboratory analysis which included major ion and metals (dissolved and totals) analysis. Total Recoverable Hydrocarbons (TRH) was added to the sample suite in December 2020.

Although duplicate samples were collected during each monitoring event, such samples have been removed from the dataset prior to statistical analysis. Where groundwater quality concentrations were measured to be below the laboratories limit of reporting (LOR), a value of half the LOR was substituted to enable statistical analysis. LOR results detailed in **Appendix A** – Groundwater Quality and Level Data are coloured red and are in italics.

Summary statistics for each analyte per monitoring bore are shown in **Appendix B** – Groundwater Quality Statistics Summary aligning with DES' guideline *Using monitoring data to assess groundwater quality and potential environmental impacts'* (2021).

Appendix C illustrates box and whisker plots as well as long-term trends of each analyte (per bore) which are considered a contaminant of concern. Box and whisker plots represent the 25th to 75th percentile (edges of boxes) and medians of the data, while the whiskers represent the minimum or maximum value that falls within 1.5 times the interquartile range (75th percentile minus the 25th percentile).

4.1.2 Review of applicable water quality objectives

The *Environmental Protection Act* (EP Act) establishes an Environmental Protection Policy (EPP) for water. The Environmental Protection (Water and Wetland Biodiversity) Policy 2019 (Old) (EPP Water) provides a framework for the protection of environmental values (e.g surface water uses) associated with Queensland rivers, streams, wetlands, lakes, aquifer, estuaries and coastal areas. Under this framework, environmental values for specific catchments and drainage basins have been formalised through a process of statutory declaration. Environmental values formalised in this way are listed in Schedule 1 of the EPP Water.

The published groundwater environmental values for the Isaac River sub-basin include aquatic ecosystems, recreational use, agriculture (irrigation, farm supply, stock water), drinking water supply and cultural values.

The EPP Water provides groundwater quality objectives for the protection of high ecological value groundwater ecosystems and drinking water. However, it should be noted that there are no high ecological value groundwater ecosystems present within the vicinity of the project.

While the Project is located outside the extent of the Fitzroy Basin groundwater zones and any subsequent sub-basin plans, box and whisker plots developed from the site-specific dataset includes water quality objectives (WQOs) for the nearest local government groundwater zone, zone 34 within the Dawson River sub-basin plan. 20th, 50th and 80th percentile values for Zone 34 are illustrated on the box and whisker plot as a comparison to the regional groundwater chemistry (see **Appendix C** for plots). Zone 34 'deep' values were considered the most relevant to the Project's groundwater monitoring bores, as majority of the bores are greater than 30 m in depth.

Overall, groundwater within the Project area measured at the Project's monitoring bores are consistently more acidic than that of the relevant regional values. Hence, the application of Zone 34's regional groundwater quality objectives to the Project's groundwater monitoring network is not considered appropriate.

4.1.3 Development of groundwater quality triggers

Reference bores were not considered when determining the compliance approach for groundwater quality triggers, as pre-mining baseline data is not available for multiple bores within every aquifer across the Project area. Additionally, the ionic composition between bores, both within the same aquifer and between different aquifers, varies. For these reasons, comparison between compliance and reference bores is not considered appropriate. Instead, the recommended compliance approach outlined in the DES (2021) guideline *Using monitoring data to assess groundwater quality and potential environmental impacts* was followed, developing a single compliance limit from the 95th percentile of site-specific data.

Groundwater quality trigger values were not developed for MB01, MB06, MB08 or MB11 due to these monitoring bores being consistently dry since installation. Proposed groundwater quality trigger values for MB07, MB09, MB10 and MB12 were developed for the following analytes: field pH, field EC, sulphate, aluminium, arsenic, iron, lead, mercury, molybdenum, selenium, and TRH (both TRH C6-C10 and TPH C10-C40). Dissolved fractions were used when developing trigger values for metalloid analytes. Analytes such as major cations (sodium, potassium, calcium, magnesium) and major anions (chloride, bicarbonate, carbonate) did not have triggers developed as they are not considered a contaminant of concern. Such analytes are monitored for interpretive purposes only.

4.2. GROUNDWATER QUALITY CHARACTERISTICS AND PROPOSED GROUNDWATER QUALITY TRIGGER VALUES

The groundwater quality characteristics measured at the Project's monitoring bores is illustrated in Figure 2. The Piper plot indicates that groundwater is generally of a sodium-chloride type. No distinct relationship between the aquifer and groundwater quality is apparent, with each bore plotting in different locations on the Piper plot, **Figure 2**.

Monitoring bores MB09 and MB10, which both monitor the DLL coal seam, show differing groundwater characteristics. This indicates a low degree of connectivity between bores screened within the same aquifer, and the spatial differences in water chemistry across the Project area.

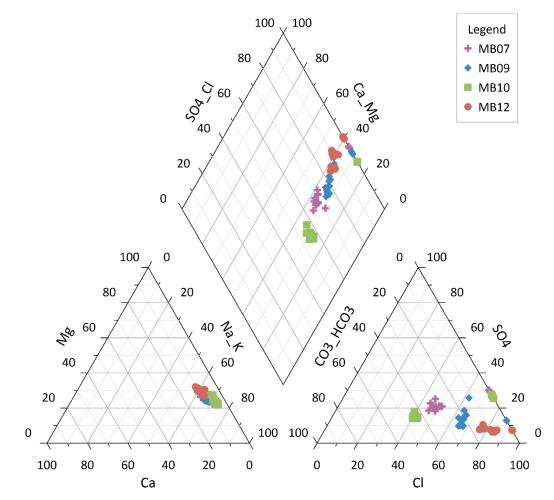


Figure 2 Piper Plot for Vulcan South Groundwater Monitoring Bores

The proposed groundwater quality triggers were developed from site-specific data collected between June 2019 and June 2022, consisting of 18 monitoring events. The 95th percentile for each analyte per monitoring bore were calculated and compared to the corresponding ANZG (2018) default guideline.

Since monitoring began in June 2019, several metalloid analytes have consistently recorded concentrations below the limit of reporting (LOR). In this case, the ANZG (2018) guideline values for the 95% level of species protection have been applied rather than a 95th percentile derived trigger owing to the numerous records below LOR. For TRH (both C6-C10 and C10-C40), the LOR has also been applied as the proposed trigger value, due to the ANZG (2018) guideline value for TRH being significantly lower than LOR. It is recommended that if several results are recorded above the LOR for aluminium, arsenic, lead, mercury, molybdenum, selenium and TRH, site specific trigger values should then be calculated. Proposed groundwater quality trigger values for Vulcan South are presented in **Table 3** below.

· ·								
Parameter	Unit	Bores	Limit	Comment				
pH (field)	pH unit	All bores	5.5 - 8.0	ANZG (2018)				
		MB07	5,834	Site-specific 95th percentile				
Electrical Conductivity (field)	µS/cm	MB09	15,095	Site-specific 95th percentile				
	μ0/ cm	MB10	4,836	Site-specific 95th percentile				
		MB12	23,160	Site-specific 95th percentile				
		MB07	786	Site-specific 95th percentile				
Sulphate	mg/L	MB09	1,917	Site-specific 95th percentile				
Suprate	ing/L	MB10	518	Site-specific 95th percentile				
		MB12	938	Site-specific 95th percentile				
	Met	als and Me	talloids					
Aluminium	mg/L	All bores	0.050	ANZG (2018)				
Arsenic	mg/L	All bores	0.013	ANZG (2018)				
		MB07	0.600	Site-specific 95th percentile				
Iron	mg/L	MB09	0.7	Site-specific 95th percentile				
	ing/L	MB10	0.2	Site-specific 95th percentile				
		MB12	4.6	Site-specific 95th percentile				
Lead	mg/L	All bores	0.004	ANZG (2018)				
Mercury	mg/L	All bores	0.0006	ANZG (2018)				
Molybdenum	mg/L	All bores	0.034	ANZG (2018)				
Selenium	mg/L	All bores	0.005	ANZG (2018)				
TRH (C6-C10)	ug/L	All bores	< 20	LOR				
TRH (C10-40)	ug/L	All bores	< 50	LOR				
		Major Io	ns					
Bicarbonate								
Carbonate								
Calcium								
Chloride	mg/L	All bores	For in	terpretation purposes only				
Magnesium								
Potassium								
Sodium								

Table 3 Proposed Groundwater Quality Trigger Values

5 GROUNDWATER TRIGGERS SUITABILITY FOR MINE CLOSURE

The proposed groundwater quality triggers are designed to detect changes in groundwater quality that has the potential to impact the environmental values associated with surrounding groundwater in the region. As the proposed triggers are based on data collected prior to mining activity commencing, the proposed triggers are representative of baseline groundwater quality within the Project area. Assuming there are no impacts to groundwater quality during the life of the Project, the proposed groundwater triggers for quality and level are considered suitable to apply in mine closure.

However, groundwater triggers should be routinely reviewed, as future sampling may indicate changes in groundwater quality that require the proposed trigger values to be amended as required. The installation or addition of new bores to the groundwater monitoring network at Vulcan South would also prompt a review of the proposed groundwater trigger values.

6 CONCLUSION

The proposed groundwater quality and level trigger values for Vulcan South are based upon a longterm dataset collected across the existing groundwater monitoring network. The proposed trigger values are robust, technically justifiable and have been derived in consideration of government guidelines (DES, 2021).

Adoption of the proposed groundwater trigger values for quality and level will:

- allow for the detection of changes in groundwater quality which are not consistent with long-term trends;
- identify abnormal groundwater levels or unexpected drawdowns which are inconsistent with the numerical flow model predictions;
- assessed and investigated groundwater quality or level changes in accordance with the Project's EA conditions; and
- prevent and reduce the frequency of groundwater quality or levels which are consistent with long-term trends from exceeding default trigger values (false positives) which are unrepresentative of the Project's groundwater system.

7 REFERENCES

ANZG (2018). Australian and New Zealand guidelines for fresh and marine water quality. Accessed from www.waterquality.gov.au/anz-guidelines. Australian and New Zealand Governments and Australia state and territory governments, Canberra.

DES (2021). Using monitoring data to assess groundwater quality and potential environmental impacts. Version 2. Department of Environment and Science (DES), Queensland Government, Brisbane.

hydrogeologist.com.au (2021). Vulcan Complex Project – Groundwater Quality Trigger Assessment. Prepared for Vitrinite Pty Ltd. April 2021.

hydrogeologist.com.au (2022). Vulcan South – Groundwater Impact Assessment. Prepared for Vitrinite Pty Ltd. March 2022.

Appendix A – Groundwater Quality & Level Data

Appendix A - Groundwater Quality and Level Data

MB07	LOR	Units	6/06/2019	14/07/2019	11/08/2019	23/09/2019	24/10/2019	2/12/2019		4/06/2020	6/08/2020	4/10/2020	3/12/2020	26/02/2021	10/05/2021	12/07/2021	12/09/2021	16/12/2021	22/03/2022	18/06/2022
рН	0.01	pH units	8.31	7.73	7.48	7.43	7.57	7.48		7.48	7.79	7.32	7.98	7.75	7.95	7.9	8.11	7.62	7.63	8.16
EC	1	μS/cm	5430	5430	5630	5620	5890	5820		5420	5260	5420	5530	5320	5150	5430	5440	5200	5590	5290
SO ₄	1	mg/L	819	778	665	754	733	722		722	592	682	666	684	671	675	691	653	687	657
Aluminium (dissolved)	0.01	mg/L	0.02	0.005	0.005	0.005	0.02	0.005		0.005	0.005	0.005	0.005	0.02	0.005	0.005	0.005	0.005	0.01	0.0025
Arsenic (dissolved)	0.001	mg/L	0.001	0.002	0.0005	0.0005	0.0005	0.0005		0.003	0.001	0.003	0.002	0.003	0.003	0.002	0.003	0.002	0.0029	0.0015
Lead (dissolved)	0.001	mg/L	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Iron (dissolved)	0.05	mg/L	0.025	0.025	0.025	0.025	0.07	0.025	No sample	0.98	0.33	0.34	0.37	0.025	0.53	0.38	0.37	0.4	0.283	0.13
Mercury (dissolved)	0.0001	mg/L	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005		
Molybdenum (dissolved)	0.001	mg/L	0.007	0.006	0.00005	0.00005	0.001	0.001		0.00005	0.001	0.001	0.00005	0.001	0.004	0.00005	0.00005	0.002	0.0016	0.001
Selenium (dissolved)	0.0002	mg/L	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TRH (C6-C9)	20	μg/L	10	10	10	10	10	10		10	10	10	10	40	10	10	10	10	10	10
TRH (C10-C36)	50	μg/L	25	25	25	25	25	25		25	25	25	25	25	25	25	25	60	200	25
Standing Water Level	-	mAHD	-	207	207.06	207.08	206.93	207.23		206.41	207.21	207.16	207.2	207.28	207.2	207.25	207.32	207.31	207.3	207.3

MB09	LOR	Units	6/06/2019	14/07/2019	12/08/2019	24/09/2019	26/10/2019	3/12/2019	22/03/2020	4/06/2020	6/08/2020	4/10/2020	3/12/2020	26/02/2021	10/05/2021	12/07/2021	12/09/2021	16/12/2021	23/03/2022	18/06/2022
рН	0.01	pH units	7.59	7.65	7.64	7.47	7.53	7.58	7.99	7.51	7.81	7.28	7.93	7.53	7.76	7.56	7.97	8.09	8.13	7.95
EC	1	μS/cm	16200	12500	14900	13500	13300	11500	11400	12000	12100	12100	12000	11600	11500	12100	12200	12000	11600	11200
SO ₄	1	mg/L	2580	1020	1800	1400	1210	934	708	808	700	748	716	745	746	729	751	718	744	703
Aluminium (dissolved)	0.01	mg/L	0.01	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Arsenic (dissolved)	0.001	mg/L	0.001	0.0005	0.001	0.0005	0.002	0.001	0.001	0.001	0.0005	0.001	0.0005	0.001	0.001	0.0005	0.001	0.0005	0.0008	0.0005
Lead (dissolved)	0.001	mg/L	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Iron (dissolved)	0.05	mg/L	0.025	0.025	0.025	0.025	0.89	0.63	0.66	0.65	0.29	0.29	0.08	0.09	0.42	0.24	0.3	0.13	0.137	0.083
Mercury (dissolved)	0.0001	mg/L	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005		
Molybdenum (dissolved)	0.001	mg/L	0.003	0.002	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.002	0.0005	0.00005
Selenium (dissolved)	0.0002	mg/L	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TRH (C6-C10)	20	μg/L	10	10	10	10	10	10	10	10	10	10	10	20	10	10	10	10	10	10
TRH (C10-C40)	50	μg/L	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	70	25	25
Standing Water Level	-	mAHD	-	215.64	215.66	215.69	215.46	215.81	215.73	215.53	215.54	215.28	215.59	215.65	215.63	215.62	215.73	215.76	215.76	215.68

MB10	LOR	Units		14/07/2019	12/08/2019	24/09/2019	24/10/2019	2/12/2019	22/03/2020	4/06/2020	8/08/2020	4/10/2020	3/12/2020	1/03/2021	11/05/2021	12/07/2021	13/09/2021	16/12/2021	22/03/2022	18/06/2022
рН	0.01	pH units		7.62	7.54	7.67	7.64	7.51	7.42	7.57	7.97	7.37	8.08	7.59	8.02	8.01	8.2	7.55	7.94	8.14
EC	1	μS/cm		5060	4780	4140	4280	4000	4000	4080	4110	3960	3970	3790	3720	3800	3830	3810	3760	3660
SO4	1	mg/L		628	491	458	445	420	414	435	396	395	381	386	378	367	375	372	383	388
Aluminium (dissolved)	0.01	mg/L		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.01	0.007	0.005
Arsenic (dissolved)	0.001	mg/L		0.0005	0.0005	0.0005	0.0005	0.0005	0.001	0.001	0.001	0.001	0.0005	0.0005	0.001	0.0005	0.0005	0.0005	0.001	0.0007
Lead (dissolved)	0.001	mg/L		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Iron (dissolved)	0.05	mg/L	No sample	0.025	0.07	0.025	0.025	0.025	0.29	0.18	0.12	0.11	0.08	0.025	0.025	0.025	0.025	0.025	0.025	0.03
Mercury (dissolved)	0.0001	mg/L		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	-	-
Molybdenum (dissolved)	0.001	mg/L		0.003	0.002	0.002	0.003	0.003	0.002	0.002	0.003	0.003	0.002	0.004	0.003	0.002	0.002	0.007	0.003	0.0024
Selenium (dissolved)	0.0002	mg/L		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TRH (C6-C10)	20	μg/L		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
TRH (C10-C40)	50	μg/L		25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Standing Water Level	-	mAHD		210.83	210.88	210.97	211.02	211.06	210.98	216.08	211.17	211.18	211.23	211.28	211.24	211.29	211.33	211.35	211.34	211.32

MB12	LOR	Units	6/06/2019	14/07/2019	11/08/2019	23/09/2019	26/10/2019	2/12/2019	22/03/2020	4/06/2020	6/08/2020	3/10/2020	3/12/2020	26/02/2021	10/05/2021	12/07/2021	13/09/2021	16/12/2021	22/03/2022	18/06/2022
рН	0.01	pH units	7.81	7.61	7.36	7.33	7.19	7.28	7.18	7.08	7.65	7.07	7.64	7.5	7.75	7.77	7.89	7.36	7.52	7.9
EC	1	μS/cm	21600	17300	17400	16900	20900	17000	14800	22200	23100	21900	23500	21900	22000	22500	22400	21800	21800	20000
SO4	1	mg/L	908	804	852	1090	808	785	682	911	781	842	830	861	847	842	822	817	861	824
Aluminium (dissolved)	0.01	mg/L	0.04	0.005	0.005	0.005	0.005	0.005	0.005	0.08	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Arsenic (dissolved)	0.001	mg/L	0.002	0.002	0.004	0.009	0.0005	0.0005	0.0005	0.001	0.001	0.002	0.0005	0.001	0.002	0.001	0.002	0.001	0.0018	0.0005
Lead (dissolved)	0.001	mg/L	0.001	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Iron (dissolved)	0.05	mg/L	0.025	0.47	0.77	1.2	0.43	1.04	2.41	4.85	4.5	3.53	2.7	2.41	3.2	3.58	3.08	3.03	3.84	1.37
Mercury (dissolved)	0.0001	mg/L	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	-	-
Molybdenum (dissolved)	0.001	mg/L	0.003	0.004	0.004	0.002	0.002	0.004	0.001	0.00005	0.00005	0.001	0.00005	0.004	0.002	0.001	0.001	0.001	0.0011	0.0003
Selenium (dissolved)	0.0002	mg/L	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
TRH (C6-C10)	20	μg/L	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
TRH (C10-C40)	50	μg/L	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	180	220	25
Standing Water Level	-	mAHD	-	218.07	218.26	218.51	219.19	218.15	218.03	216.9	218.4	218.41	218.38	217.7	217.45	217.46	216.7	217.29	217.68	216.86

MB07	Unit	LOR	n	Min	5 th percentile	20 th percentile	50 th percentile	Mean	80 th percentile	95 th percentile	Max	Std Dev
pH - Field		0.01		6.53	6.682	6.754	6.91	7.00	7.072	7.598	8.31	0.40
EC - Field	μS/cm	1		4040	4235.2	5186.4	5383	5365.76	5803	6099.2	6132	545.04
Са	mg/L	1		84	86.4	95.6	102	105.12	114.2	129	129	13.56
Mg	mg/L	1		161	165.8	173.2	182	181.71	190	202.8	210	12.43
Na	mg/L	1		759	781.4	800	845	844.24	866.4	914.6	997	53.06
К	mg/L	1		6	6	6	7	7.82	7	11.4	25	4.48
HCO3	mg/L	1		752.74	609.695	638.792	671	671.09	699.792	731.329	752.74	41.80
SO4	mg/L	1		592	640.8	665.2	684	697.12	730.8	786.2	819	53.31
Cl	mg/L	1	17	1080	1096	1132	1190	1198.82	1272	1320	1320	77.37
Al (dissolved)	mg/L	0.01	11/	0.0025	0.0045	0.005	0.005	0.008	0.009	0.02	0.02	0.01
As (dissolved)	mg/L	0.001		0.0005	0.0005	0.0006	0.002	0.002	0.003	0.003	0.003	0.00
Fe (dissolved)	mg/L	0.05		0.025	0.025	0.025	0.283	0.255	0.378	0.62	0.98	0.26
Pb (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00
Hg (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00
Mo (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.001	0.002	0.00192	0.0062	0.007	0.00
Se (dissolved)	mg/L	0.0002		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00
TRH (C6-C10)	μg/L	20		10	10	10	10	13.75	10	29.5	40	10.61
TRH (C10-C40)	µg/L	50		25	25	25	25	51.25	46	151	200	61.34

MB09	Unit	LOR	n	Min	5 th percentile	20 th percentile	50 th percentile	Mean	80 th percentile	95 th percentile	Max	Std Dev
pH - Field		0.01		6.64	6.6995	6.816	6.92	7.01	7.158	7.576	7.95	0.32
EC - Field	μS/cm	1		6332	10642.35	11643.2	11961	12267.17	13543.6	15290.5	16200	1995.11
Са	mg/L	1		184	194.2	206.4	220	232.50	251.2	305.25	369	43.18
Mg	mg/L	1		312	324.75	350.4	364.5	398.50	422.6	570.75	694	90.71
Na	mg/L	1		1600	1736	1864	1930	1977.78	2050	2318.5	2820	250.10
К	mg/L	1		44	44.85	47.4	49.5	50.72	52	58.55	73	6.29
HCO3	mg/L	1		771.04	861.564	1017.724	1065.06	1039.28	1106.052	1131.184	1151.68	95.84
SO4	mg/L	1		700	702.55	716.8	747	986.67	1134	1917	2580	496.85
Cl	mg/L	1	18	3250	3301	3470	3610	3706.11	3814	4530.5	4590	379.23
Al (dissolved)	mg/L	0.01		0.0025	0.0025	0.005	0.005	0.005	0.005	0.00575	0.01	0.00
As (dissolved)	mg/L	0.001		0.0001	0.00044	0.0005	0.001	0.001	0.001	0.00115	0.002	0.00
Fe (dissolved)	mg/L	0.05		0.025	0.025	0.047	0.1885	0.277	0.546	0.6945	0.89	0.27
Pb (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00
Hg (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00
Mo (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.000	0.00032	0.00215	0.003	0.00
Se (dissolved)	mg/L	0.0002		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00
TRH (C6-C10)	μg/L	20] [10	10	10	10	11.25	10	16.5	20	3.54
TRH (C10-C40)	µg/L	50		25	25	25	25	30.625	25	54.25	70	15.91

MB10	Unit	LOR	n	Min	5 th percentile	20 th percentile	50 th percentile	Mean	80 th percentile	95 th percentile	Max	Std Dev
pH - Field		0.01		6.7	6.748	6.82	6.91	6.96	7.062	7.318	7.43	0.19
EC - Field	μS/cm	1		3742	3758	3808.4	3980	4121.82	4291.6	5024.8	5668	489.80
Са	mg/L	1		33	33.8	37.4	42	42.82	46.8	55	67	8.05
Mg	mg/L	1		96	100.8	104.2	116	120.53	128.6	163.4	177	20.96
Na	mg/L	1		605	629.8	648	673	685.65	729.6	762.4	177	51.06
К	mg/L	1		2	2.8	3	3	3.00	3	3.2	4	0.35
HCO3	mg/L	1		690.52	696.071	719.068	751.52	778.80	801.54	968.619	1013.82	92.63
SO4	mg/L	1		367	371	378.6	395	418.35	443	518.4	628	64.11
Cl	mg/L	1	17	742	763.6	786	813	831.24	833.6	1008.4	1050	79.43
Al (dissolved)	mg/L	0.01]*′[0.0025	0.0045	0.005	0.005	0.005	0.005	0.0076	0.01	0.00
As (dissolved)	mg/L	0.001		0.0005	0.0005	0.0005	0.0005	0.001	0.001	0.001	0.001	0.00
Fe (dissolved)	mg/L	0.05		0.015	0.023	0.025	0.025	0.001	0.104	0.202	0.29	0.07
Pb (dissolved)	mg/L	0.0001		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.00
Hg (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00
Mo (dissolved)	mg/L	0.0001		0.002	0.002	0.002	0.003	0.003	0.003	0.0046	0.007	0.00
Se (dissolved)	mg/L	0.0002		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00
TRH (C6-C10)	μg/L	20		10	10	10	10	10	10	10	10	0.00
TRH (C10-C40)	µg/L	50		25	25	25	25	25	25	25	25	0.00

MB12	Unit	LOR	n	Min	5 th percentile	20 th percentile	50 th percentile	Mean	80 th percentile	95 th percentile	Max	Std Dev
pH - Field		0.01		6.22	6.3475	6.57	6.69	6.76	6.99	7.1895	7.81	0.36
EC - Field	μS/cm	1		14000	14340	16927.4	21625	19907.89	22337.6	22841.65	22851	3078.20
Са	mg/L	1		230	290.35	350.6	483	436.06	502.4	523.55	538	88.89
Mg	mg/L	1		555	573.7	633.6	857.5	808.00	925.6	947.5	956	139.71
Na	mg/L	1		2330	2372.5	2694	3195	3038.89	3276	3464.5	3490	362.83
К	mg/L	1		13	13	14	18	16.89	19	20	20	2.49
HCO3	mg/L	1		570.96	668.316	742.248	762.5	777.95	841.068	904.02	946.72	84.92
SO4	mg/L	1		682	766.15	805.6	836	842.61	861	937.85	1090	79.75
Cl	mg/L	1	18	4940	5203.5	5920	7665	7099.44	7936	8098	8200	1101.17
Al (dissolved)	mg/L	0.01		0.0025	0.0025	0.005	0.005	0.011	0.005	0.046	0.08	0.02
As (dissolved)	mg/L	0.001		0.0005	0.0005	0.001	0.0019	0.002	0.0032	0.0056	0.009	0.00
Fe (dissolved)	mg/L	0.05		0.025	0.36925	0.878	2.555	2.358	3.56	4.5525	4.85	1.47
Pb (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.0001	0.00005	0.0001925	0.001	0.00
Hg (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00
Mo (dissolved)	mg/L	0.0001		0.00005	0.00005	0.00058	0.00105	0.002	0.0036	0.004	0.004	0.00
Se (dissolved)	mg/L	0.0002		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00
TRH (C6-C10)	μg/L	20		10	10	10	10	10	10	10	10	0.00
TRH (C10-C40)	µg/L	50		25	25	25	25	68.75	118	206	220	81.71

Appendix C – Groundwater Quality Trends

Appendix C – Groundwater Quality Trends

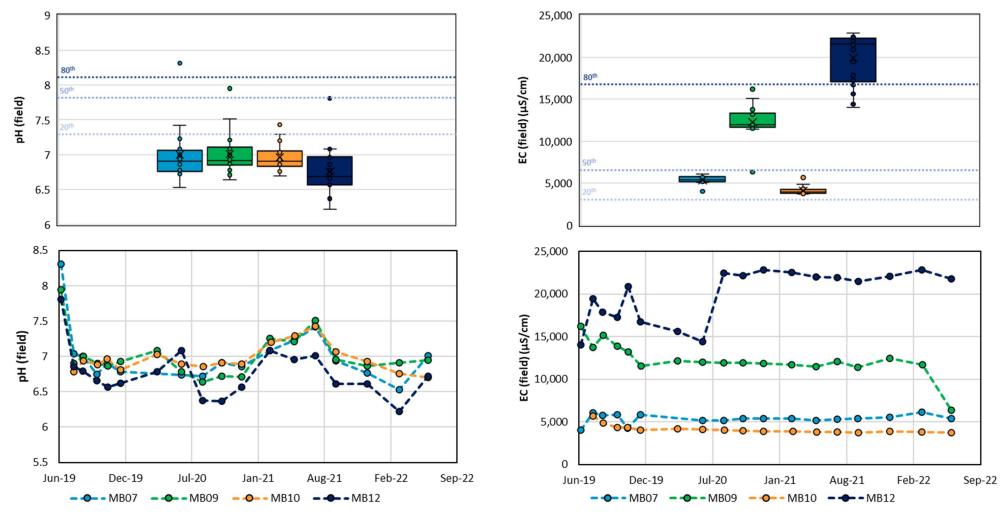


Plate 1 – Field pH

Plate 2 – Field Electrical Conductivity

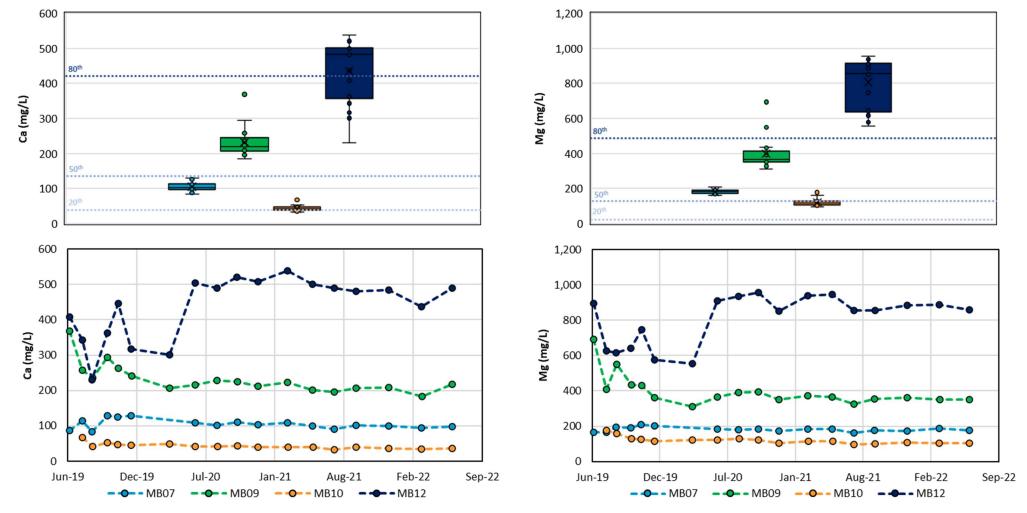


Plate 3 – Calcium (Ca²⁺)

Plate 4 – Magnesium (Mg²⁺)

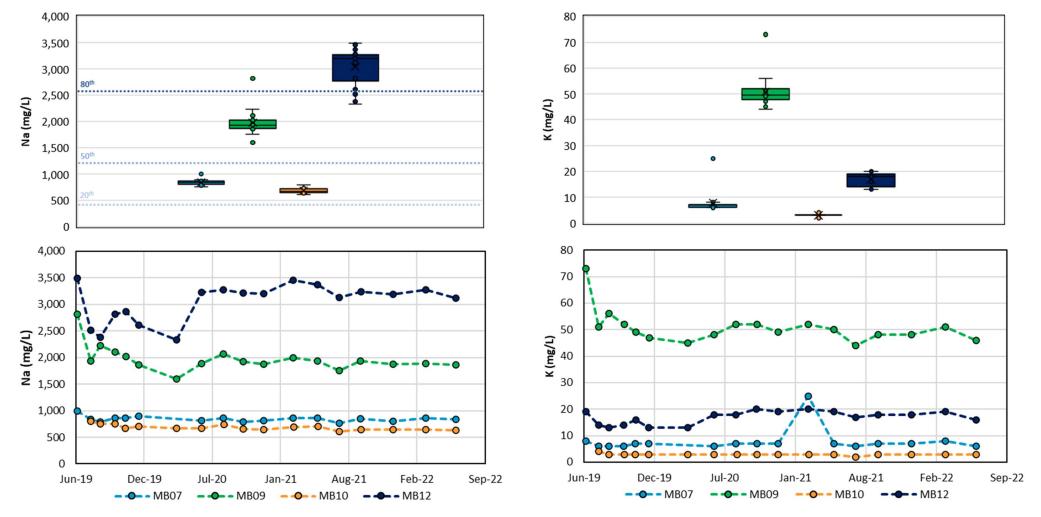


Plate 5 – Sodium (Na⁺)

Plate 6 – Potassium (K⁺)

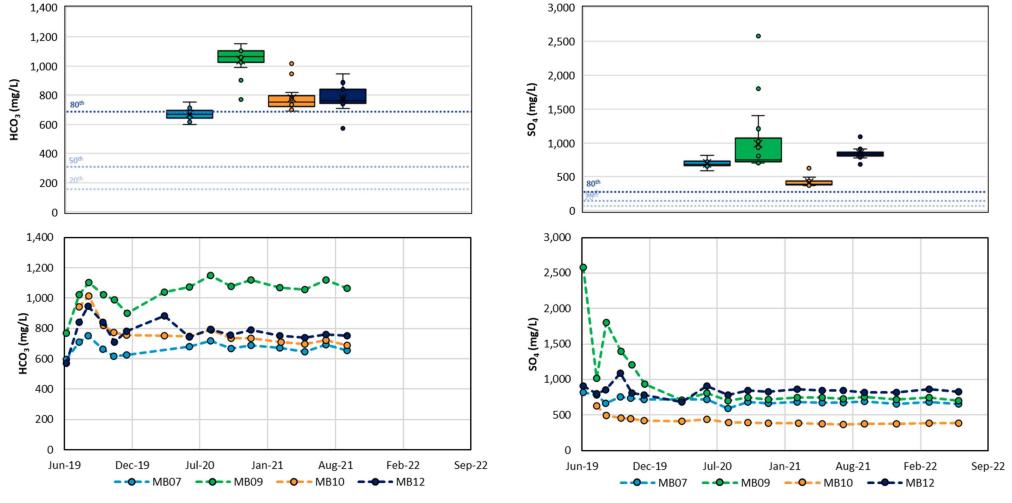


Plate 7 – Bicarbonate (HCO₃-)

Plate 8 – Sulphate (SO₄²⁻)

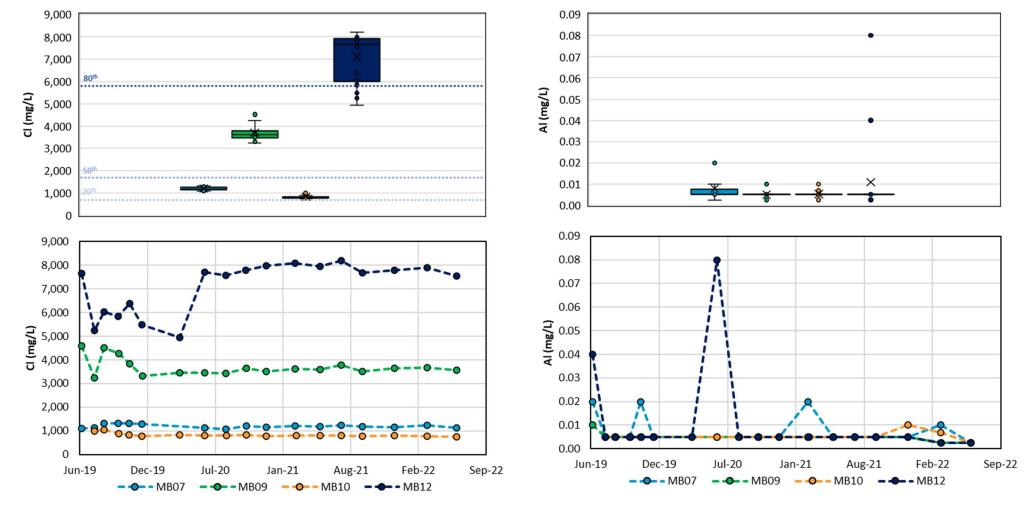


Plate 9 – Chloride (Cl⁻)

Plate 10 – Dissolved Aluminium (Al)

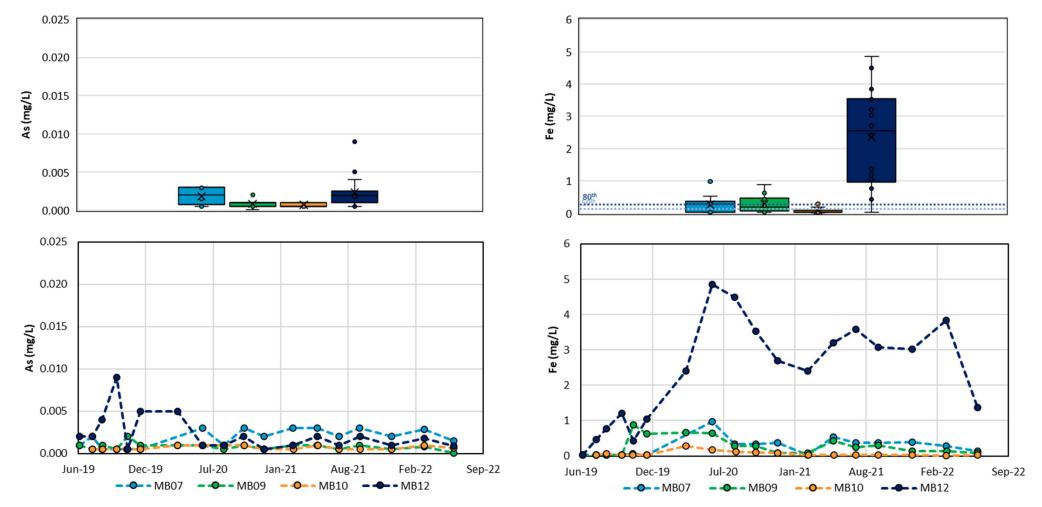


Plate 10 – Dissolved Arsenic (As)

Plate 11 – Dissolved Iron (Fe)

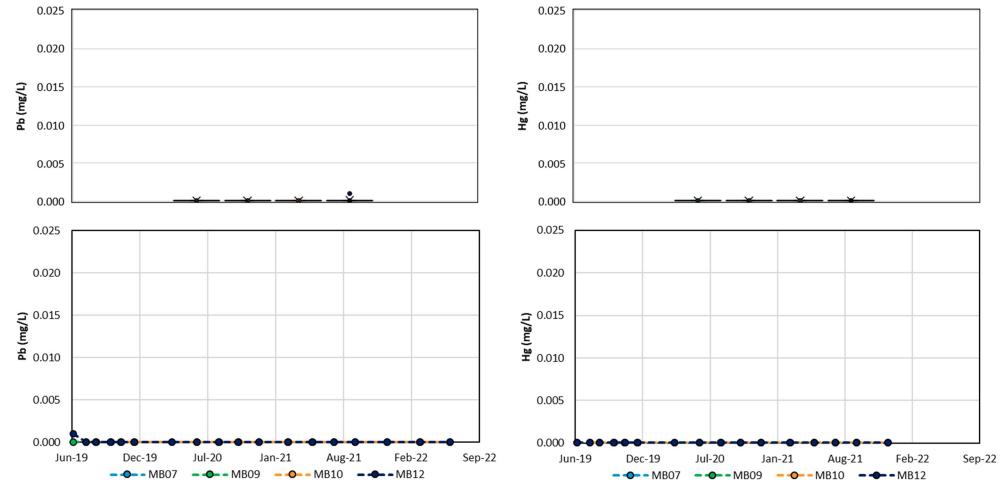


Plate 12 – Dissolved Lead (Pb)

Plate 13 – Dissolved Mercury (Hg)

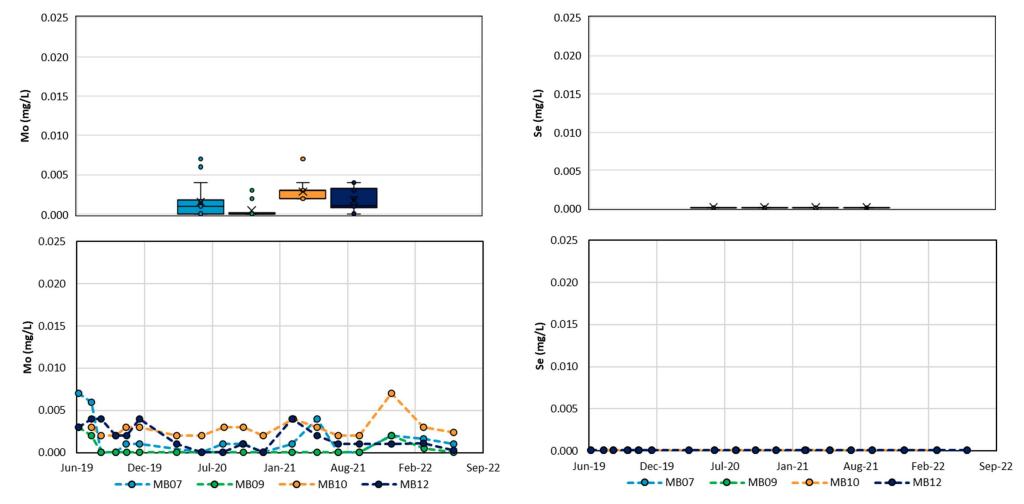


Plate 14 – Dissolved Molybdenum (Mo)

Plate 15 – Dissolved Selenium (Se)

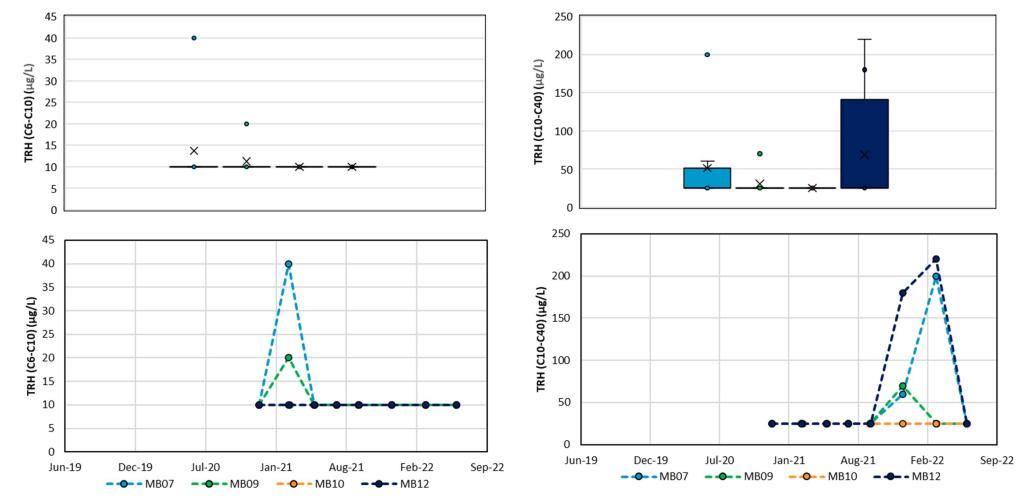


Plate 16 – Total Recoverable Hydrocarbons (TRH) C6 – C10 fraction

Plate 17 – Total Recoverable Hydrocarbons (TRH) C10 – C40 fraction