TECHNICAL REPORT

Geochemical Assessment of Waste Rock, Coal Reject and Coal

Vulcan South

Prepared for: Vitrinite Pty Ltd

TECHNICAL REPORT

Geochemical Assessment of Waste Rock, Coal Reject and Coal

Vulcan South

Prepared for: Vitrinite Pty Ltd

DOCUMENT CONTROL	-
Report Name	Geochemical Assessment of Waste Rock, Coal Reject and Coal
Project Number	2022074
File Location	Z:\004_Projects\Projects 2022\2022074 (Vulcan South RFI Response)\Reporting
Date	18/10/2022

DOCUMENT DISTRIBUTION			
Document Name	Document Status	Distributed to	Date distributed
01_2022014_Geochemical Assessment of Waste Rock, Coal Reject and Coal_Rev 03	Rev 03	Vitrinite Pty Ltd	18/10/2022
01_2022014_Geochemical Assessment of Waste Rock, Coal Reject and Coal_Rev 02	Rev 02	Vitrinite Pty Ltd	10/05/2022

Limitations and disclaimer:

This report documents the work undertaken by RGS Environmental Pty Ltd (RGS). This report should be read in full. While the findings presented in this report are based on information that RGS considers reliable unless stated otherwise, the accuracy and completeness of source information cannot be guaranteed, although RGS has taken reasonable steps to verify the accuracy of such source data. RGS has made no independent verification of this information beyond the agreed scope of works and RGS assumes no responsibility for any inaccuracies or omissions outside of RGS's direct control. Furthermore, the information compiled in this report addresses the specific needs of the Client, so may not address the needs of third parties using this report for their own purposes. Thus, RGS and their employees accept no liability for any losses or damage for any action taken or not taken on the basis of any part of the contents of this report. Those acting on information provided in this report do so entirely at their own risk.

This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Table of Contents

1	INTRODUCTION	1
	1.1 Project Overview	1
	1.2 Open Cut Mining Activities	
	1.2.1 Overview	
	1.2.2 Waste rock removal and placement	3
	1.2.3 Coal extraction	
	1.3 High Wall Mining Trial	
	1.4 Production Rate	
	1.5 Coal Processing	
	1.5.1 Processing wastes	
	1.6 Product Handling	
	1.6.1 Product Rail	
	1.7 Progressive Rehabilitation	
	1.8 Ancillary Infrastructure	
	1.9 Scope of Work	
2	·	
~	2.1 Geology and Stratigraphy	
	2.2.1 Overview2.2.2 Waste rock removal and placement	
	2.2.3 Coal extraction	
	2.2.4 Production rate and schedule	
	2.2.5 Ancillary Infrastructure	
	2.3 Progressive Rehabilitation	
3	METHODOLOGY	
3	3.1 Sample Selection and Preparation	
	3.1.1 Waste Rock (Overburden and Interburden)	
	3.1.2 Coal Reject	
	3.1.3 Sample Preparation	
	3.2 Geochemical Test Program	
	3.2.1 Static Tests	
	3.2.2 Kinetic Tests	
4	GEOCHEMICAL AND PHYSICAL CHARACTERISATION RESULTS	
-	4.1 Acid Base Account	
	4.1.1 Overburden/Interburden	
	4.1.2 Coal Reject	
	4.1.3 Coal	
	4.2 Multi-Element Concentration in Solids	
	4.2.1 Geochemical Abundance Index	
	4.3 Soil Characteristics and Sodicity	
	4.3.1 Soil Characteristics	
	4.3.2 Sodicity	

	4.4	Wate	er Quality Static Tests	28
	4.5	Wate	er Quality Kinetic Tests	29
5	DIS	SCUS	SION	
	5.1	AMD	Potential and Management	32
	5.2	Multi	-Element Composition and Water Quality	32
	5.2.	1 Mul	Iti-Element Composition and Enrichment	32
	5.2.	2 Wa	ter Quality	32
	5.3	Reve	egetation and Rehabilitation	33
	5.4	Mana	agement Measures	33
	5.4.	1 Wa	ste Rock	34
	5.4	4.1.1	Monitoring of waste rock material	34
	5.4	4.1.2	Management of PAF waste rock material	34
	5.4	4.1.3	Emplacement sampling and testing	34
	5.4.	2 Coa	al Rejects	36
	5.4.	3 Coa	al Rejects	36
	5.4.	4 Wa	ter Quality Monitoring	36
			ntingency Measures	
6	CO	NCL	JSIONS	37
7	RE	FERE	INCES	

List of Figures

Figure 1-1: Project location and layout	2
Figure 2-1: Typical stratigraphic profile	8
Figure 3-1: Sampled drillhole collar locations	
Figure 5-1: Schematic cross-section of in-pit PAF material emplacements	. 35
Figure 5-2: Schematic cross-section of ex-pit PAF material emplacement	. 35

List of Graphs

Graph 4-1: pH values for Vulcan waste rock samples	15
Graph 4-2: pH values for Jupiter waste rock samples	15
Graph 4-3: EC values for Vulcan waste rock samples	16
Graph 4-4: EC values for Jupiter waste rock samples	16
Graph 4-5: Total sulfur for Vulcan waste rock samples	17
Graph 4-6: Total sulfur for Jupiter waste rock samples	18
Graph 4-7: NAPP values for Vulcan waste rock samples	18
Graph 4-8: NAPP values for Jupiter waste rock samples	19
Graph 4-9: ANC v MPA for Vulcan waste rock samples	19
Graph 4-10: ANC v MPA for Jupiter waste rock samples	20
Graph 4-11: pH values for coal reject samples	21
Graph 4-12: EC values for coal reject samples	21
Graph 4-13: Total sulfur for coal reject samples	22
Graph 4-14: NAPP values for coal reject samples	
Graph 4-15: ANC v MPA for coal reject samples	23
Graph 4-16: Total sulfur distribution for raw coal samples	25
Graph 4-17: Total sulfur "box and whisker" plot for raw coal samples	25

List of Tables

Table 1-1: Open cut pit characteristics	3
Table 2-1: Indicative mining schedule	9
Table 3-1: Sample materials used for geochemical testing	12
Table 3-2: KLC material description	13
Table 4-1: Salinity and pH criteria for assessment of waste rock samples	17
Table 4-2: Geochemical classification criteria for waste rock materials	20
Table 4-3: Salinity and pH criteria for assessment of coal reject samples	22
Table 4-4: Geochemical classification criteria for coal reject materials	24
Table 4-5: Geochemical abundance index values and enrichment factors	26
Table 4-6: Ratings for cation exchange capacity	27
Table 4-7: Composite mining waste samples selected for KLC tests	29
Table 4-8: Sulfate generation and sulfide oxidation rates for KLC tests	31
Table 5-1: Material management over mine life	33

List of Attachments

- Attachment A Geochemical Assessment of Mining Waste Materials
- Attachment B Static Geochemical Test Results
- Attachment C Kinetic Geochemical Test Results
- Attachment D ALS Laboratory Results
- Attachment E Risk Assessment for the Ex-Pit Emplacement of Coal Rejects

1 INTRODUCTION

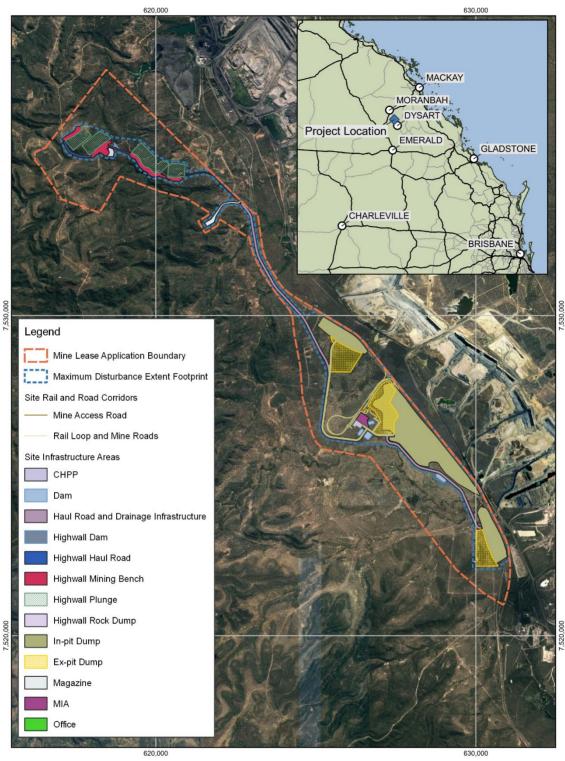
1.1 Project Overview

Vitrinite Pty Ltd (Vitrinite) is the proponent of Vulcan South (the Project), located north of Dysart and approximately 33 km south-east of Moranbah in Queensland's Bowen Basin (**Figure 1-1**). The Project lies to the immediate west of several established mining operations including BHP's Peak Downs and Saraji mines.

The Project is located immediately to the south of Vitrinite's initial mining project, the Vulcan Coal Mine (VCM), located on ML700060. The Vulcan South mining lease application area abuts ML700060, however proposed activities will be implemented separately.

The Vulcan hard coking coal target has been defined and selected for open cut development via three separate open cut pits that form the primary mining focus of the Project. The Project includes primary rehabilitation works, following a two-year construction period and will operate for approximately nine years. The Project will extract approximately 13.5 Mt of run of mine (ROM) coal consisting predominately of hard coking coal with an incidental thermal secondary product at a rate of up to 1.95 Mtpa. The Project will target the Alex and multiple Dysart Lower coal seams. Truck and shovel mining operations will be employed to develop the pits. A mine infrastructure area (MIA) will be established along with a modular coal handling and preparation plant (CHPP), rail loop and train load-out facility at a location between the northern and central pits. The CHPP will include tailings dewatering technologies to maximise water recycling and to produce a dry tailings waste product (along with a reject product) for permanent storage within active waste rock dumps.

Out-of-pit waste rock dumps will be established prior to commencing in-pit dumping activities that will continue for the life of the operation. Ancillary infrastructure, including a ROM pad, offices, roads and surface water management infrastructure will be established to support the operation.


A realignment of the existing Saraji Road and services infrastructure to the eastern boundary of the proposed Mining Lease Application (MLA) area, adjacent to the existing rail easement, is also proposed in a number of locations. The re-alignment will occur within the MLA area.

In-pit dumping will fill the majority of the pit volumes during operations with the remaining final voids to be backfilled upon cessation of mining, resulting in the establishment of waste rock dump landforms above the former pit areas. Following backfill of the final voids, the remaining material stored in the initial out-of-pit waste rock dumps will be rehabilitated in-situ.

The Project includes a small-scale highwall mining trial program in the north of the MLA. The trial will involve the establishment of four highwall mining benches across a number of hillsides to facilitate extraction of coal utilising a CAT HW300 highwall miner or similar. The highwall mining trial will target up to 750 kt of coal which will be transported by truck to the Project CHPP via a dedicated haul road within the MLA area. The trial is scheduled to be completed within the first year of mining operations.

The Project is a small-scale mining operation, with coal extraction planned for approximately eight years, followed by completion of primary rehabilitation activities in year nine. Construction of infrastructure associated with the mining operation, including the CHPP and the rail loop, is expected to be completed within 2 years. Construction of the realigned Saraji Road sections will be completed intermittently as the project progresses, as required. Ongoing establishment of internal road networks, surface water management infrastructure and other ancillary infrastructure will continue to be developed as the pits and in-pit dumps advance.

nite Pty Ltd; Google Satellite

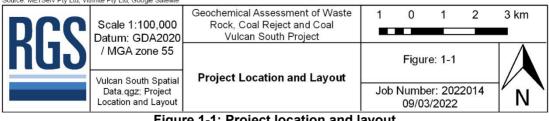


Figure 1-1: Project location and layout

1.2 Open Cut Mining Activities

1.2.1 Overview

The three open cut pits will extend to a depth of approximately 60 metres (m), following the seams as they dip eastwards. The footprints of the proposed open cut pits are provided in **Table 1-1**.

Open Cut Pit	Approximate Footprint (ha)	Mining Direction	Target Seams
Vulcan North	66	North to south	Alex and multiple Dysart Lower
Vulcan Main	334	North to south	Alex and multiple Dysart Lower
Vulcan South	77	North to south	Alex and multiple Dysart Lower

Table 1-1: Open cut pit characteristics

1.2.2 Waste rock removal and placement

Initial waste rock extracted during the early stages of each open pit will be placed in out-of-pit dumps to the west of the open pits. Following this initial out-of-pit placement and once sufficient pit space has been established, in-pit placement of waste rock will commence. This will continue for the life of each pit as it is developed. The in-pit dumps will extend up to approximately 60 m above the surrounding ground level, with batters shaped up to a maximum slope of 15 %. A central plateau will drain to the west to minimise the requirement for significant drainage infrastructure along the eastern toe of the dump (where space is limited).

An assessment of waste rock geochemistry has concluded that the waste rock does not propose a significant risk of generating acid, saline or metalliferous drainage. Therefore, no selective handling and treatment measures are proposed. Furthermore, low permeability capping over the dump surface is considered not to be required.

1.2.3 Coal extraction

Once waste rock has been removed to expose the coal seam, coal will be extracted via truck and shovel. The coal will be hauled to the ROM pad. Crushing and screening will be completed as part of the CHPP raw coal handling circuit.

1.3 High Wall Mining Trial

The Project includes a small-scale highwall mining trial program in the north of the MLA. The trial will involve the establishment of four highwall mining benches across a series of hillsides to facilitate extraction of coal utilising a CAT HW300 highwall miner or similar and will target up to 750 kt of coal within the first year of mining operations. Mined coal will be loaded by front-end-loader and transported by truck to the Project CHPP via a dedicated haul road within the MLA. Whilst common in other coal mining regions, the trial will test the proposed highwall mining equipment in local conditions to assist Vitrinite decision making on the methodology's suitability for other assets held within the region.

The target areas for the trial present competent roof and floor materials and target seams that are relatively flat dipping and non-undulating. The coal seams are of a thickness that is appropriate for highwall mining (0.9 to 1.5 m) and the coal itself is of reasonable strength whilst still being easily cut with a highwall continuous miner. The depth of cover ranges between 12 and 50 m.

Minimal infrastructure will be required to support the highwall mining trial. This will include mobile diesel fuel tanks, workshop containers and portable bathroom amenities. Earthmoving equipment will be required for the development of benches for the highwall miner to operate on as well as road construction and maintenance equipment to build and maintain the haul road to the CHPP/ROM stockpile area. For the trial, the benches will form part of the haul road and will be connected by sections of linking haul road.

ROM coal will be loaded from the discharge conveyor of the highwall miner onto a stacker belt for stockpiling on the active bench. Loaders will manage the stockpile and load B-triple trucks for haulage to the Project CHPP facilities. Waste rock from the benches will be temporarily stockpiled during highwall mining activities, prior to being back-filled into the bench areas during progressive rehabilitation.

One of the benches will require establishment of a small waste rock dump that will be rehabilitated in situ.

Mine affected water will be contained on each bench and allowed to drain to completed highwall plunges (voids). Following rehabilitation earthworks, runoff will be managed by erosion and sediment control structures before being allowed to flow to the receiving environment at an acceptable quality.

1.4 Production Rate

The Project will commence operations at the Vulcan North and Vulcan Main pits in close succession. Operations at the Vulcan Main pit will continue for the full 8-year mine life. Mining activities at the Vulcan North pit are anticipated to be completed after three years. Activities at the Vulcan South pit will commence in Year 6 of operations and will conclude three years later in Year 8.

Throughout the Project life, the average annual ROM coal production rate is less than 1.7 Mtpa. During peak production periods, the Project will produce up to 1.95 Mtpa.

1.5 Coal Processing

The Project will include a modular CHPP to process ROM coal into a number of marketable products (coking coal and thermal coal). In summary, the CHPP will include:

- a raw coal handling circuit to size ROM coal for further processing and remove incidental reject wastes;
- a raw coal bypass conveyor to provide the option to direct appropriate quality raw coal to the product stockpile;
- three CHPP circuits (coarse, secondary coarse and mid-sized) for coal beneficiation, producing a single product stream;
- a tailings thickener to thicken ultrafine reject material; and
- tailings dewatering technology to dewater tailings to a solid cake for disposal in active waste rock dumps.

The CHPP will produce dual products at any one time with different products produced in campaigns via control of different ROM feed materials.

1.5.1 Processing wastes

All processing wastes, including reject material and dry process tailings, will be stored within active waste rock dumps, removing the requirement for a tailings storage facility at the site. Priority will be given to disposal of processing wastes within in-pit dumps at depth; however, scheduling constraints may necessitate storage of some material in ex-pit waste rock dumps.

Wastewater will be recycled within the CHPP circuit to minimise raw water demand and storage and disposal requirements.

1.6 Product Handling

A single CHPP product conveyor will deliver product coal to a radial product stacker. The system will be able to deliver different products to two different stockpiles. Each of the stockpiles will have a capacity of 200,000 tonnes.

The train load out facility will link the product stockpiles with the proposed rail loop and will utilise a two-coal valve reclaim system to load at a rate of 3,500 tph. The train load out facility will be managed via a fully

automated system, including overload protection and load veneering. The facility will be positioned over the rail line and will incorporate a suitable under rail spillage pit.

1.6.1 Product Rail

Product coal will be railed from the Project rail loop onto the Goonyella Rail network. Export options include Dalrymple Bay to the north and RG Tanna, in Gladstone, to the south.

1.7 **Progressive Rehabilitation**

A Progressive Rehabilitation and Closure Plan (PRCP) has been prepared to support the Environmental Authority Application and to meet Vitrinite's obligations under the *Environmental Protection Act, 1994* as amended by the *Mineral Resources and Energy (Financial Provisioning) Act 2018 Act.* In summary, the PRCP describes the proposed final landform, post-mine land uses, rehabilitation planning information and a schedule of progressive rehabilitation activities.

1.8 Ancillary Infrastructure

The ancillary infrastructure required to support mining operations will be progressively established as the pits, dumps and highwall trial progress.

A new mine access road will be established from Saraji Road in the centre of the MLA, between the rail loop and the northern extent of the Vulcan Main pit. This will lead to the site offices and administration and on to the MIA. The MIA will include heavy vehicle workshops and park-up, equipment laydown areas and Project offices and facilities.

An explosives magazine will be established to the west of the Vulcan north pit, a suitable distance from operational areas and critical infrastructure.

Surface water management infrastructure will be established progressively to divert clean water catchments around operational areas and to manage runoff from disturbed areas. A series of mine water dams will be established to manage raw water supply, pit water and supply water for dust suppression. A series of drains and bunds will be established to direct runoff to sediment control structures.

Linking roads, tracks and pipelines will be established around site as required. Similarly, temporary stockpiles of useful materials (e.g., topsoil, subsoil, gravels) will be established as required in available and appropriate locations. To facilitate flexible establishment of such infrastructure, a conservative disturbance footprint has been proposed and assessed.

1.9 Scope of Work

RGS has completed a Geochemical Assessment of waste rock, coal reject and coal for the Project in accordance with relevant legislation, guidelines, and policies^{1,2,3,4}. RGS has produced this technical report for inclusion in the Project baseline studies and approvals process. The study was completed to address the following items:

- Review of available geochemical and geological data and existing drill hole database (including plans, drill hole logs and drill core photographs) associated with the Project;
- Coordination of the material sampling and geochemical characterisation programs;

¹ COA (2016). Commonwealth of Australia. Leading Practice Sustainable Development Program for the Mining Industry. Preventing Acid and Metalliferous Drainage. September, Canberra ACT.

² DEHP (2013). Application Requirements for Activities with Impacts to Land Guideline. Queensland Department of Environment and Heritage Protection.

³ DME (199). Technical Guidelines for the Environmental Management of Exploration and Mining in Queensland, Technical Guideline – Assessment and Management of Acid Drainage and Saline/Sodic Wastes. Queensland Department of Minerals and Energy (DME).

⁴ INAP (2022). Global Acid Rock Drainage Guide (GARD Guide). Document prepared by Golder Associates on behalf of the International Network on Acid Prevention (INAP). June 2022 (<u>http://www.inap.com.au/</u>).

- Refinement of any necessary environmental management measures related to waste rock and coal reject emplacement and rehabilitation and ROM coal stockpile management; and
- Preparation of a Geochemical Assessment Report (this report) largely based on existing information that will be supplemented by additional geochemical information on samples from the Project, when available. The Geochemical Assessment Report has assessed the potential for any Acid and Metalliferous Drainage (AMD) or other salinity/erosion/ dispersion issues related to waste rock, coal reject and coal at the Project.

2 GEOLOGY, MINING ACTIVITIES AND REHABILITATION

The Project is located north of Dysart to the immediate west of several established mining operations including Peak Downs and Saraji coal mines.

2.1 Geology and Stratigraphy

The Project will target the Alex and multiple Dysart Lower coal seams within the Permian-aged Moranbah Coal Measures. A surficial Tertiary waste rock (overburden) sequence is present in the Project area, consisting of unconsolidated soils and sands. Underlying this is Permian-aged waste rock (overburden), which is comprised of sandstone and siltstone.

The Permian waste rock (interburden) materials at the Project generally comprise sandstone, siltstone, claystone and coal, that were deposited in a fluvial flood plain environment within the Bowen Basin. Significant mesa hills formed by highly resistant sandstones have provided target coal seams throughout the centre of the study area. The typical stratigraphic profile encountered at the Project is provided in **Figure 4**.

The Alex seam is generally quite shallow and occurs just below the base of weathering in the stratigraphic profile. The Dysart Lower Seam comprises several plys with the waste rock (interburden/parting) in between generally consisting of fine-grained sedimentary units, such as siltstone, mudstone and claystone, with the occasional carbonaceous or coaly unit.

The May Seam (consisting of carbonaceous claystone) and Matilda Seam (consisting of interbedded coal and siltstone) underlie the Dysart seam, but are not considered economic.

2.2 Mining Activities

2.2.1 Overview

The open cuts will extend to a depth of approximately 60 m, following the seams as they dip eastwards. The total footprint of the proposed open cuts is approximately 477 ha (**Table 1-1**). Development of the open cuts will progress from the west of the pits mining from north to south, toward the eastern boundary of the proposed MLA. Truck and shovel mining methods and blasting will be employed to extract waste rock and coal from the pit.

2.2.2 Waste rock removal and placement

Initial waste rock extracted during the early stages of the development of the open cut pits will be placed in an out-of-pit dump to the west of the pits. Following this initial out of pit placement and once sufficient pit space has been established, in-pit placement of waste rock will commence. This will continue for the life of the project as the pits advance. The in-pit dumps will extend approximately 60 m above the surrounding ground level, with batters shaped at a maximum of 15 %. A central plateau will drain to the west to minimise the requirement for significant drainage infrastructure along the eastern toe of the dump (where space is limited).

Assessment of waste rock geochemistry (RGS, 2019; 2020) showed that the waste rock does not pose a significant risk of generating acid, saline or metalliferous drainage. Therefore, no selective handling and treatment measures are proposed and low permeability capping over the dump is unlikely to be required.

2.2.3 Coal extraction

Once waste rock has been removed to expose the coal seams, coal will be extracted via truck and shovel. The coal will be hauled to the ROM pad. Crushing and screening will be completed as part of the CHPP raw coal handling circuit. Depending on mining and market conditions, ROM coal may be trucked to the Vulcan Coal Mine CHPP located on ML700060 to the north of the project. If this is the case, haulage would be via private haul road and would not need to utilise public roadways.

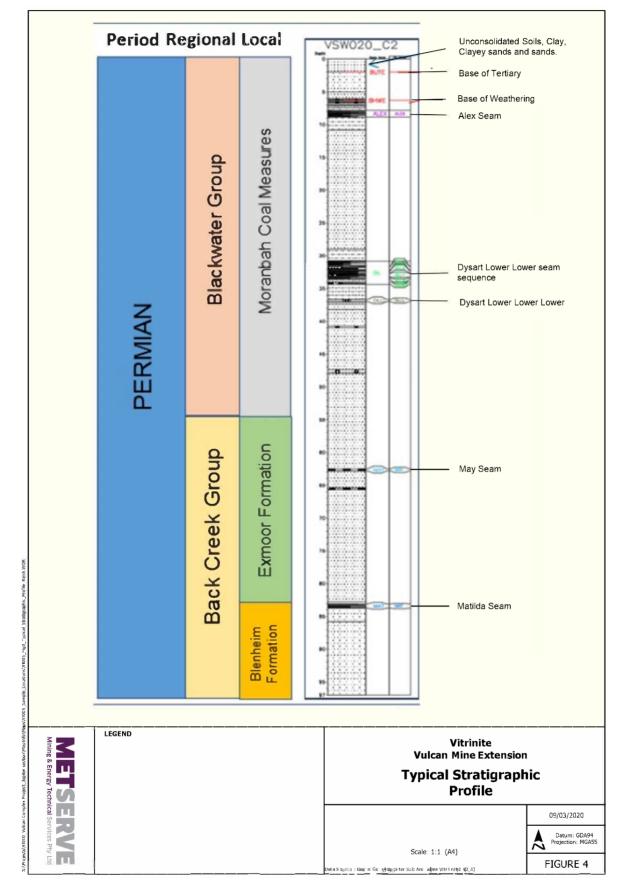


Figure 2-1: Typical stratigraphic profile

2.2.4 Production rate and schedule

An indicative annual mining schedule is provided in **Table 2-1**. Product coal will be railed from the Project rail loop onto the Goonyella Rail network. Export options include Dalrymple Bay to the north and RG Tanna in southern Gladstone.

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	
	2023	2024	2025	2026	2027	2028	2029	2030	Total (t)
Highwall Mining									
Topsoil (t)	622,557								622,557
Waste Rock (t)	6,246,343								6,246,343
ROM Coal (t)	750,000								750,000
Vulcan North Pit									
Topsoil (t)	58,734	313,019	40,004						411,757
Waste Rock (t)	4,001,234	24,117,467	1,616,789						29,735,489
ROM Coal (t)	26,137	1,202,385	585,592						1,814,114
Vulcan Main Pit									
Topsoil (t)	35,686	298,486	298,079	305,290	389,958	183,329	257,856	141,396	1,910,079
Waste Rock (t)	1,261,637	17,067,931	38,929,456	40,431,863	40,855,127	33,106,442	23,798,147	11,652,257	207,102,860
ROM Coal (t)		687,965	1,223,774	1,841,120	1,728,933	1,560,844	1,304,554	1,027,403	9,374,594
Vulcan South Pit									
Topsoil (t)						142,196	198,534	131,741	472,471
Waste Rock (t)						8,100,351	17,179,435	13,883,816	39,163,602
ROM Coal (t)						249,607	647,113	451,034	1,347,754
Annual total									
Topsoil (t)	716,977	611,505	338,083	305,290	389,958	325,525	456,390	273,137	3,416,865
Waste Rock (t)	11,509,214	41,185,398	40,546,244	40,431,863	40,855,127	41,206,793	40,977,582	25,536,073	282,248,294
ROM Coal (t)	776,137	1,890,350	1,809,366	1,841,120	1,728,933	1,810,451	1,949,667	1,488,437	13,294,461

Table 2-1: Indicative mining schedule

2.2.5 Ancillary Infrastructure

A new mine access road will be established from Saraji Road in the centre of the MLA, between the rail loop and the northern extent of the Vulcan Main pit. This will lead to the site offices and administration and then on to the Mine Infrastructure Are (MIA). The MIA will include heavy vehicle workshops and park-up, equipment laydown areas, project offices and facilities. An explosives magazine will be established to the west of the Vulcan North pit, away from operational areas and critical infrastructure.

Surface water management infrastructure will be established progressively to divert clean water catchments around operational areas and to manage runoff from disturbed areas. A series of mine water dams will be established to manage raw water supply, pit water and supply water for dust suppression. A series of drains and bunds will be established to direct runoff to sediment control structures.

Linking roads, tracks and pipelines will be established around site as required. Similarly, temporary stockpiles of useful materials (e.g., topsoil, subsoil and gravels) will be established as required in available and appropriate locations. To facilitate flexible establishment of such infrastructure, a conservative disturbance footprint has been proposed and assessed.

2.3 **Progressive Rehabilitation**

A Progressive Rehabilitation and Closure Plan (PRCP) has been prepared to support the Environmental Authority Application and to meet Vitrinite's obligations under the *Environmental Protection Act, 1994* as amended by the *Mineral and Energy Resources (Financial Provisioning) Act 2018*. In summary, the PRCP describes the proposed final landform, post-mine land uses, rehabilitation planning information and a schedule of progressive rehabilitation activities.

3 METHODOLOGY

RGS personnel worked closely with Vitrinite (geological) personnel to develop an appropriate sampling and geochemical testing plan, which was used to obtain representative samples of waste rock (overburden and interburden) and coal reject materials associated with the VCM and Vulcan South. This was supplemented with total sulfur data for a range of coal samples from the VCM/Vulcan South target seams (Alex and Dysart Lower).

3.1 Sample Selection and Preparation

The sampling methodology used to obtain representative samples of waste rock and coal reject materials for the Project was undertaken in accordance with relevant technical guideline documents. While there are no specific regulatory guidelines regarding the number of samples required, existing risk-based technical guidelines for the geochemical assessment of mining waste materials in Australia (AMIRA, 2002; COA, 2016c) and worldwide (INAP, 2022) were used by RGS as a framework for the sampling program.

3.1.1 Waste Rock (Overburden and Interburden)

Representative samples of waste rock (overburden and interburden) materials were identified and collected as drill chips from the 2018-2019 exploration drilling program. A total of 138 waste rock samples were collected from 21 drill holes at the Project. Seven of these holes were drilled within the Jupiter target area and 14 within the Vulcan target area. The locations of the Jupiter and Vulcan drill holes with respect to the Project are shown in **Figure 3-1**.

The samples represented the waste rock (overburden and interburden; including roof, floor and parting materials, i.e., potential coal reject material) expected to be encountered during development activities, from the surface to a depth of approximately 45 m. This covers the entire stratigraphic profile that is currently under consideration for mining at the Project. **Table 3-1** provides the number of samples of each type of material collected from the Jupiter and Vulcan targets and used in the geochemical assessment. Further information on the identity of the 138 individual waste rock samples is provided in **Table B1** (**Attachment B**). The number of samples was selected to provide a good statistical representation of the amount and type of mined material expected to be encountered at the Project, considering the risk profile indicated from the geology and geochemical information from nearby coal projects.

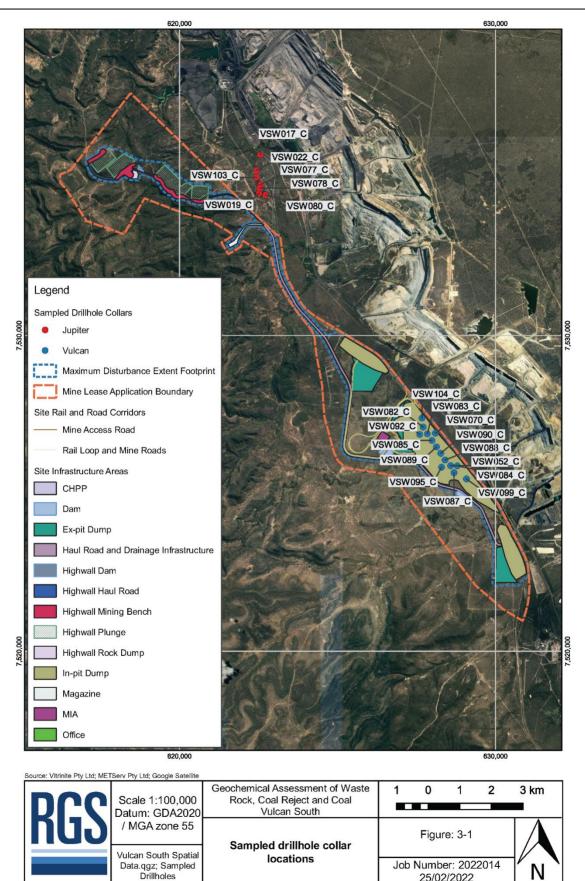


Figure 3-1: Sampled drillhole collar locations

25/02/2022

3.1.2 Coal Reject

Two size fractions (coarse: Wash 2, <50 to >2 mm; and fine: Wash 3 & fines, <2 to >0.25 mm & <0.25 to >0 mm) of coal reject materials were selected to best represent the two coal reject streams that will be produced from coal washing on site. Coal core from a total of six holes was collected by Vitrinite personnel and delivered to the ALS coal quality laboratory in Richlands, Queensland. This core was composited into 11 samples of coarse and fine reject material (four from Jupiter and seven from Vulcan) and sent to ALS Environmental Laboratory (ALS) in Stafford, Queensland for geochemical testing.

Sample Description	Sample Type	Number of samples	
Sample Description	Sample Type	Vulcan	Jupiter
Waste Rock and Potential Coal Re	eject	Target	Target
Soil, clay, sandstone, siltstone, claystone and conglomerate Overburden		83	17
Sandstone, siltstone and claystone	Interburden	12	1
Sandstone, siltstone and claystone; carbonaceous	Roof, floor and	20	5
sandstone, siltstone, claystone and coal	parting	20	5
	Total	115	23
Coal Reject		Coarse	Fine
Coarse and fine reject Coal Reject		5	6
	5	6	

Table 3-1: Sample materials used for g	geochemical testing
--	---------------------

3.1.3 Sample Preparation

Once received, the waste rock and coal reject samples were prepared by crushing and pulverising to less than 75 μ m size, where necessary. This method of sample preparation results in a homogenous sample, but also generates a large sample surface area in contact with the assay solution. This provides a greater potential for dissolution and reaction and represents an assumed initial 'worst case' scenario for these materials. A list describing the source of all of the 149 waste rock and coal reject samples included in this study is provided in **Table B1 (Attachment B)**.

3.2 Geochemical Test Program

A series of geochemical and physical tests were completed on the 149 waste rock and coal reject samples described in detail in **Section 3.1**. The test program was designed to assess the degree of risk from the presence and potential oxidation of sulfides, as well as the generation and the presence/leaching of soluble metals/metalloids and salts. The assessment also included characterisation of standard soil parameters including salinity, sodicity, cation exchange capacity, exchangeable sodium percentage and major metal concentrations.

A detailed summary of the parameters involved in completing a static and kinetic geochemical characterisation and assessment of mining waste materials is provided in **Attachment A**.

3.2.1 Static Tests

Static geochemical tests provide a 'snapshot' of the characteristics of a sample material at a single point in time. These tests were staged to screen individual samples before selecting either individual and/or composite samples for more detailed static test work.

The Acid Base Account method was used as a screening procedure whereby the acid-neutralising and acidgenerating characteristics of a material were assessed. All 149 samples were screened using the Acid Base Account method, which included static geochemical testing for the following parameters:

pH [1:5 w:v. sample:deionised water];

- Electrical conductivity (EC) [1:5 w:v. sample:deionised water];
- Total sulfur [LECO analyser]; and
- Acid neutralising capacity (ANC) [AMIRA, 2002 method].

The results of the ABA screening tests are discussed in **Section 4.1**. After the results of the screening tests were received and interpreted, two waste rock (interburden) samples and 11 coal reject samples were also tested for sulfide sulfur, using the chromium reducible sulfur (Scr), Australian Standard (AS 4969.7, 2008) method.

From the total sulfur value (or Scr value, where available), maximum potential acidity (MPA) values were calculated. Scr data was preferentially used where available, as it provides a more accurate representation of the potential MPA, as acid generation primarily forms from the oxidation of reactive sulfide measured by this method.

After the results of the initial static geochemical tests were received and reviewed, 122 of the original 149 samples were used to create six composite samples for waste rock and four composite samples for coal reject materials. For the Vulcan target, soil, sandstone, clay and claystone composites were prepared; while sandstone and siltstone composites were prepared for the Jupiter target. All ten composite samples were sent for whole rock multi-element testing at ALS Stafford laboratory. The composite samples were tested for:

- Paste pH and EC [1:5 w:v. sample: deionised water];
- Major cations (Ca, Mg, K, Na) [HCl and HNO3 acid digest followed by ICP-AES/MS];
- Major anions (CI, SO₄, F) [ICP-AES/MS and PC Titrator (1:5 w:v water extracts)];
- Acidity and alkalinity as CaCO₃ mg/L [PC Titrator (1:5 w:v water extracts)];
- Total metals (Ag, Al, As, B, Cd, Cr, Co, Cu, F, Fe, Hg, Pb, Mn, Mo, Ni, Sb, Se, U, V and Zn) [HCl and HNO₃ acid digest followed by FIMS and/or ICP-AES/MS]; and
- Soluble metals (Ag, Al, As, B, Cd, Cr, Co, Cu, F, Fe, Hg, Pb, Mn, Mo, Ni, Sb, Se, U, V and Zn) [ICPAES/MS and FIMS (1:5 w:v water extracts)].

The six composite waste rock samples were also tested for exchangeable cations (Ca, Mg, Na and K) [ICP-AES], and results were used to calculate the cation exchange capacity (CEC) and exchangeable sodium percentage (ESP). Summary geochemical results tables for the static geochemical test program are provided in **Attachment B**. The ALS laboratory certificates of analysis are provided in **Attachment D**.

3.2.2 Kinetic Tests

Following receipt and interpretation of the static geochemical test results, six kinetic leach column (KLC) tests were set up at the RGS 'in-house' laboratory using composite waste rock and coal reject materials from the Vulcan and Jupiter targets. The KLC tests for waste rock were completed from June to December 2019 and from December 2019 to June 2020 for coal reject materials. A summarised description of the material represented by each KLC test is shown below in **Table 3-2**. The identities of the specific individual samples included in composite samples used for the KLC test program are detailed in **Table B7** (Attachment B).

KLC Sample #	Description
KLC1	Mainly Sandstone waste rock (Vulcan target)
KLC2	Mainly Claystone waste rock (Vulcan target)
KLC3	Mainly Sandstone waste rock (Jupiter target)
KLC4	Mainly Siltstone waste rock (Jupiter target)
KLC 5	Coarse Reject (Jupiter/Vulcan Target)
KLC 6	Fine Reject (Jupiter/Vulcan Target)

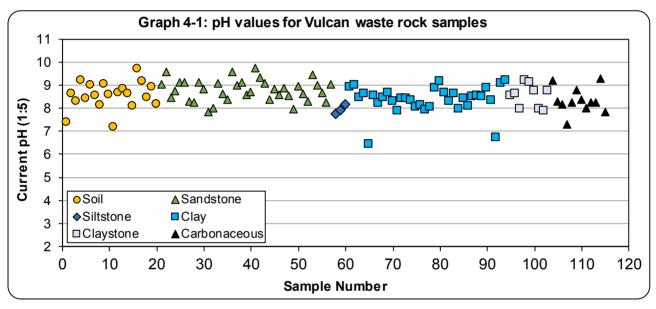
Table 3-2: KLC material description

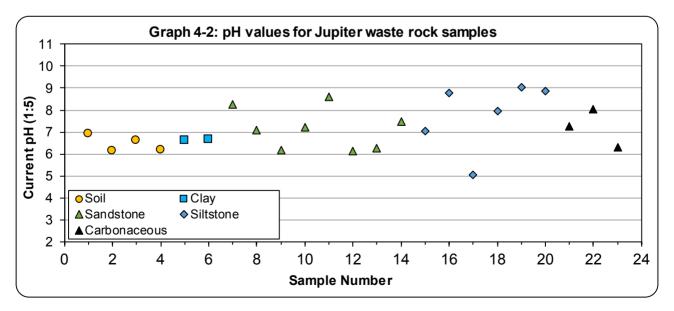
Approximately 2 kg of each composite sample was weighed and used in each of the KLC tests. Heat lamps were used daily to simulate sunshine and ensure that the KLC test materials were unsaturated and subject to oxidising conditions between leaching events (this is essentially an assumed "worst case" scenario for sulfide oxidation and potential acid/salt generation). Further details and a schematic of the KLC test arrangement are provided in **Attachment A**.

All leachate samples collected from the KLC tests were assayed at ALS Stafford laboratory for:

- pH, EC, Acidity and alkalinity [PC Titrator and pH/ EC probes];
- Dissolved metals/metalloids (Al, As, B, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) [ICP-AES/MS];
- Dissolved major cations (Ca, Mg, Na and K) [ICP-AES/MS]; and
- Dissolved major anions (CI, SO₄) and F [ICP-AES/MS].

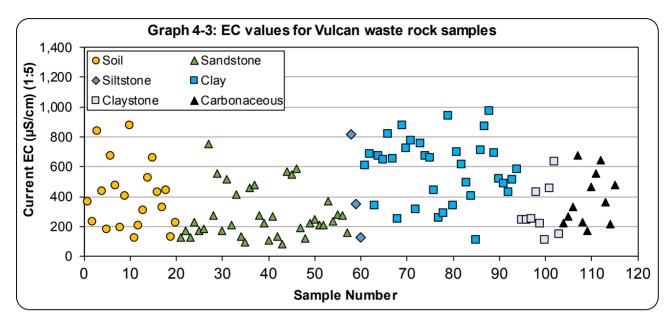
Summary results tables and trends for the KLC tests are provided in **Attachment C**. The raw ALS laboratory test results received for the KLC test program are provided in **Attachment D**.

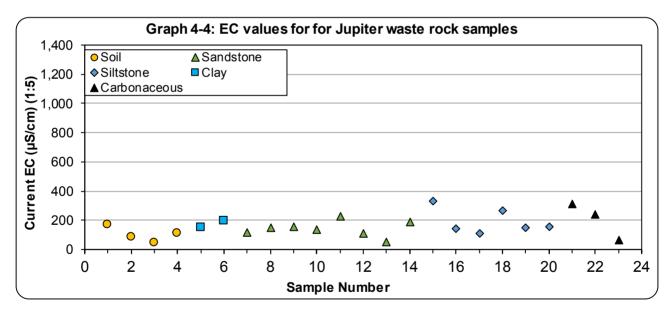

4 GEOCHEMICAL AND PHYSICAL CHARACTERISATION RESULTS


4.1 Acid Base Account

4.1.1 Overburden/Interburden

Acid Base Account results for the 138 waste rock (overburden/interburden) samples (115 from the Vulcan target; 23 from the Jupiter target) are presented in **Table B2** (**Attachment B**) and summarised below. The results are shown by target and lithology to facilitate interpretation.


• **pH:** The pH_(1:5) of the 115 samples from the Vulcan target ranges from 6.4 to 9.7, with a median pH value of 8.6 (**Graph 4-1**). The pH_(1:5) of the 23 samples from the Jupiter target ranges from 5.1 to 9.0, with a median value of 7.0 (**Graph 4-2**). The pH results indicate that waste rock material at the Vulcan and Jupiter targets will add some alkalinity to any contact water as the pH of deionised water used in the pH tests is typically in the pH range of 5.0 to 6.5.



EC: The current EC_(1:5) of the Vulcan target samples ranges from 85 to 972 μS/cm, with a median value of 365 μS/cm (Graph 4-3). The current EC_(1:5) of the Jupiter target samples ranges from 43 to 331 μS/cm, with a median value of 152 μS/cm (Graph 4-4). The highest EC values tend to be associated with some of the soil and clay materials at the Vulcan target.

To provide additional context, the $pH_{(1:5)}$ and $EC_{(1:5)}$ results for waste rock (overburden and interburden) are classified against pH and salinity criteria for mining waste materials, as defined by the Queensland DME (1995) technical guidelines for the environmental management of exploration and mining in Queensland (**Table 4-1**).

Based on the median pH and EC values, the waste rock (overburden/interburden) samples tested are generally regarded as having a 'Medium' to 'High' soil pH and 'Low' salinity characteristics, as indicated by the distribution of samples corresponding to each pH and salinity class. Samples from the Jupiter target have a slightly lower (neutral) median pH value than samples from the Vulcan target.

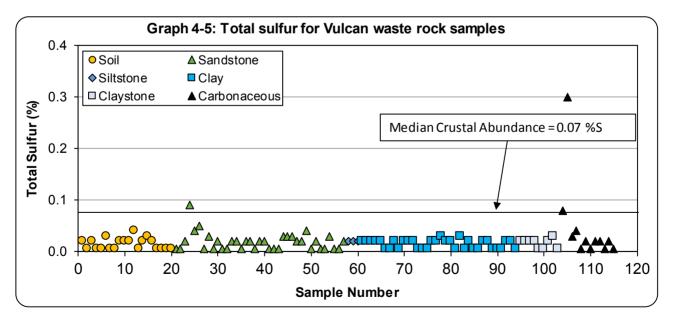
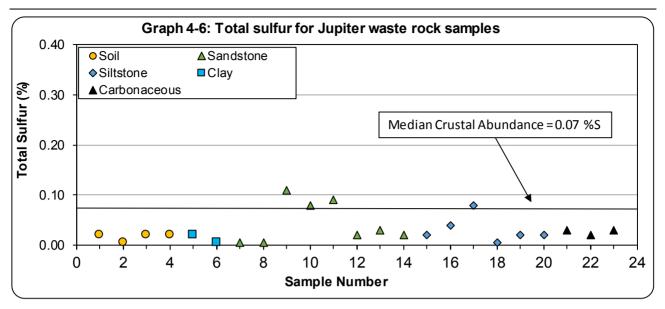
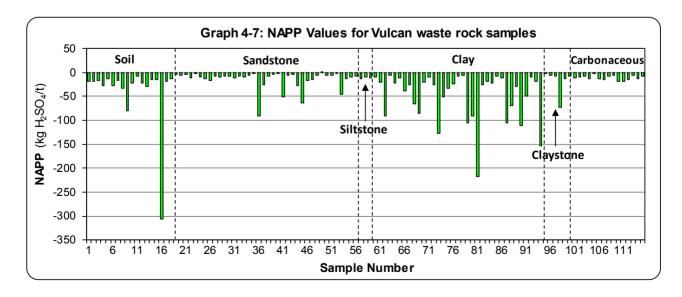

	-	•		•	
Vulcan Target	Very Low	Low	Medium	High	Very High
pH _{1:5}	< 4.5	4.5 – 5.5	5.5 – 7.0	7.0 – 9.0 (Median – 8.6)	> 9.0
EC _{1:5} (µS/cm)	< 150	150 – 450 (Median – 365)	450 – 900	900 – 2,000	> 2,000
Jupiter Target	Very Low	Low	Medium	High	Very High
pH _{1:5}	< 4.5	4.5 – 5.5	5.5 – 7.0 (Median 7.0)	7.0 – 9.0	> 9.0
EC1:5 (µS/cm)	< 150	150 – 450 (Median – 152)	450 – 900	900 – 2,000	> 2,000

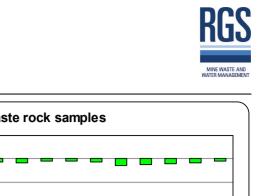
Table 4-1: Salinity and	pH criteria for assessment of waste rock samples	;
-------------------------	--	---

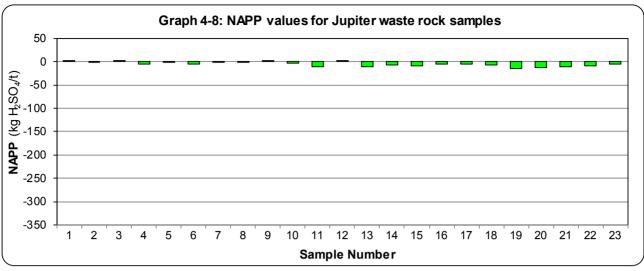
Note: Adapted from DME, 1995. Highlighted cells show the category corresponding to the median pH and EC values (orange shading) for the waste rock (overburden/interburden) samples.

The pH and EC tests were completed on pulverised samples ($\leq 75 \mu$ m) with a large surface area in contact with the leaching solution, thereby providing greater potential for dissolution and reaction, and represent an assumed 'worst case' scenario. It is also expected that the salinity of leachate from low sulfur mining waste materials will diminish with time as salts are flushed from the rock matrix and a state of equilibrium develops. At that point, the salinity of seepage/runoff should stabilise at a lower asymptotic concentration relative to the weathering/erosion of the materials.

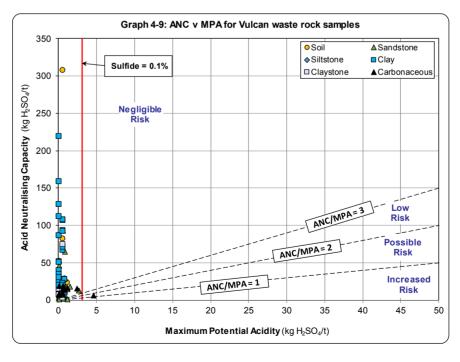

Sulfur: The total sulfur content of the samples from the two targets ranges from below the laboratory limit of reporting (LoR) to 0.30 %S and has a very low median value of 0.02 %S, compared with the median crustal abundance value of 0.07% S in unmineralised soils (Bowen, 1979; INAP, 2022). Materials with a total sulfur content less than or equal to 0.1 %S are essentially barren of sulfur, generally represent background concentrations, and have negligible capacity to generate acidity⁵. Graphs 4-5 and 4-6 illustrate the total sulfur content of the sample materials from the Vulcan and Jupiter targets, respectively. The results demonstrate that most samples have a total sulfur concentration well below median crustal abundance.

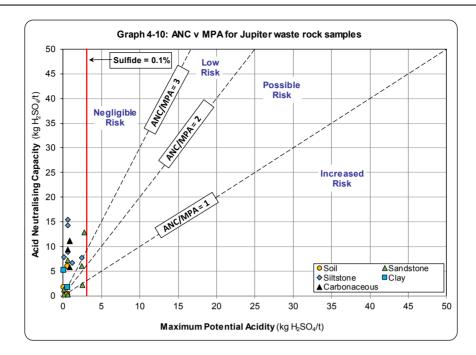

 $^{^{\}rm 5}$ The median crustal abundance of sulfur (0.07% S) has been rounded up to 0.1% (INAP, 2022).





- Sulfide sulfur: Due to the very low total sulfur content of most of the waste rock (overburden/interburden) samples, only two samples (a weathered coal sample from the Alex coal seam at Vulcan and a sandstone sample from Jupiter) were tested for sulfide sulfur using the Scr method. The test results show that only the weathered coal sample from Vulcan contains any appreciable sulfide sulfur and approximately half of the total sulfur content is likely to be present as organic sulfur which does not generate acidity.
- **MPA:** Based on the total sulfur content (and sulfide sulfur content, where available), the MPA that could be generated by the Vulcan and Jupiter waste rock samples ranges from below the laboratory LoR to 4.7 kg H₂SO₄/t, and has a very low median value of 0.6 kg H₂SO₄/t.
- **ANC:** The ANC for the 138 samples ranges from 0.25 to 307 kg H₂SO₄/t and has a median value of 13.6 kg H₂SO₄/t, which is approximately 20 times the median MPA.
- **ANC:MPA ratio:** The ANC:MPA ratio of the 138 samples ranges from 0.2 to 1,423.7, with a median value of 36.1. In simplistic terms, this means that on average, the overburden and interburden sample materials have more than an order of magnitude excess ANC over MPA.
- **NAPP:** The calculated Net Acid Producing Potential (NAPP) values range from -306.4 to 1.0 kg H₂SO₄/t, with a negative median value of -12.7 kg H₂SO₄/t. The NAPP data is presented in **Graphs 4-7 and 4-8**.


Vulcan South


Given the very low sulfur content of the waste rock tested and the generally negative NAPP values, the risk of generating any significant amounts of acidity from these materials is considered to be negligible.

Graphs 4-9 and **4-10** show plots of ANC versus MPA for the waste rock samples tested by material type from the Vulcan and Jupiter targets, respectively. ANC:MPA ratio lines have been plotted on the figures to illustrate the factor of safety associated with the samples in terms of potential for generation of acidity. Generally, those samples with an ANC:MPA ratio of greater than 2 and a sulfide content of <0.1% S are considered to represent material with a high factor of safety and a very low risk of generating acidity (COA, 2016c; INAP, 2022).

The Acid Base Account results show that all but one sample (a weathered coal sample from the Alex seam at Vulcan) plots in the negligible risk domain shown in the figures and therefore the overwhelming majority of samples tested represent waste rock materials that have a high factor of safety and a very low risk of generating acidity. If economic, it is likely that the Alex seam will be mined and report as coal to the ROM pad. As can be seen in **Figure 3**, the Alex seam covers a depth interval of only 1 m and therefore is expected to represent a small fraction (up to 2%) of waste rock materials at the Vulcan target if found to be uneconomic and reports as waste rock.

Table 4-2 provides a summary of the geochemical classification criteria used by RGS to classify the acid forming nature of the waste rock and a breakdown of the number of samples in each classification category. The classification criteria reflect Australian (COA, 2016c) and international (INAP, 2022) guidelines for the classification of mining waste materials.

The Acid Base Account test data presented in **Table C2 (Attachment C)** and discussed in this section have been used to classify the acid forming nature of the 138 waste rock samples. The results in **Table 4-2** demonstrate that of the 138 samples tested, 137 samples (~99.3%) are classified as Non-Acid Forming (NAF) (Barren) and one sample (~1%) is classified as Uncertain. None of the samples are classified as Potentially Acid Forming (PAF).

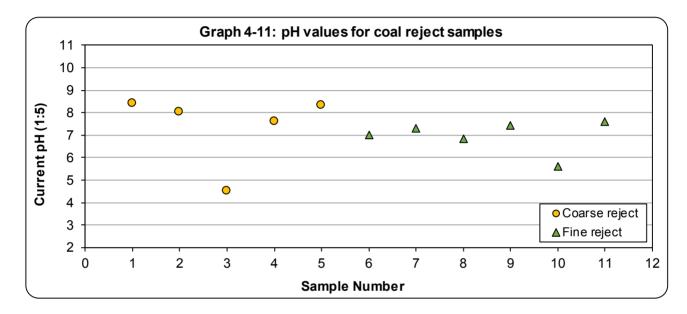
Geochemical Classification	Total Sulfur ¹ (%)	NAPP (kg H₂SO₄/t)	ANC:MPA Ratio	No. Samples (n = 138)
Non-Acid Forming (Barren) ²	≤ 0.1	-	-	137
Non-Acid Forming	> 0.1	≤ -5	≥ 2	0
Uncertain	> 0.1	> -5 and ≤ +5	< 2	1
Potentially Acid Forming	> 0.1	> +5	< 2	0

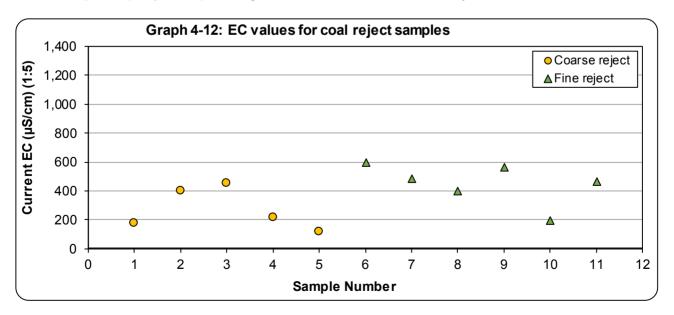
Table 4-2: Geochemical classification of	criteria for waste rock materials
--	-----------------------------------

Notes:

1. If total sulfur is less than or equal to 0.1% S, the NAPP and ANC:MPA ratio are not required for material classification as the sample is essentially barren of oxidisable sulfur.

2. A sample classified as NAF can be further described as 'barren' if the total sulfur and/or sulfide sulfur content is less than or equal to 0.1% S, as the sample essentially has negligible acid generating capacity.


Overall, the Acid Base Account results confirm that the overwhelming majority of the waste rock materials represented by the samples tested have low sulfur content, excess ANC, and are classified as NAF. These materials have a high factor of safety and a very low risk of generating acidic drainage. One carbonaceous (weathered coal) sample has a slightly elevated sulfur content, however, as a bulk material, waste rock is likely to have excess ANC and be classified as NAF.


4.1.2 Coal Reject

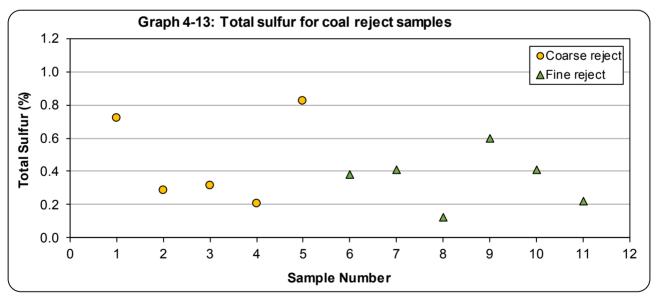
Acid Base Account results for the 11 coal reject samples from the Project (five coarse reject and six fine reject samples) are presented in **Table B3** (**Attachment B**) and summarised below. The results are shown by material type to facilitate interpretation.

• **pH:** The pH_(1:5) of the 11 coal reject samples ranges from 4.5 to 8.4 and has a median pH value of 7.4 (**Graph 4-11**). The pH results indicate that bulk coal reject material generated at the Project will most likely add some alkalinity to any contact water as the pH of deionised water used in the pH tests is typically in the pH range of 5.0 to 6.5. The lowest pH value was obtained for one of the coarse reject samples however the remaining four coarse reject samples have a neutral to slightly alkaline pH value. On the basis of these results, it is expected that leachate from bulk coal reject materials will be pH neutral.

• **EC:** The current EC_(1:5) of the coal reject samples ranges from 116 to 595 μS/cm and has a median value of 401 μS/cm (**Graph 4-12**). The highest EC is measured for the fine reject materials.

To provide additional context, the $EC_{(1:5)}$ and $pH_{(1:5)}$ results for coal reject are classified against pH and salinity criteria for mining waste materials, as defined by the Queensland DME (1995) technical guidelines for the environmental management of exploration and mining in Queensland (see **Table 4-3**).

Coal Reject	Very Low	Low	Medium	High	Very High
pH _{1:5}	< 4.5	4.5 – 5.5	5.5 – 7.0	7.0 – 9.0 (Median – 7.4)	> 9.0
EC1:5 (µS/cm)	< 150	150 – 450 (Median – 401)	450 – 900	900 – 2,000	> 2,000


 Table 4-3: Salinity and pH criteria for assessment of coal reject samples

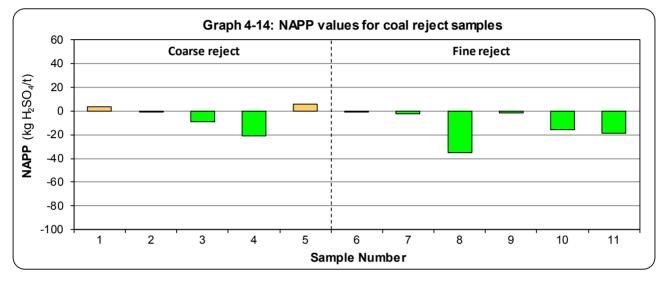
Note: Adapted from DME, 1995. Highlighted cells show the category corresponding to the median pH and EC values (orange shading) for the coal reject samples.

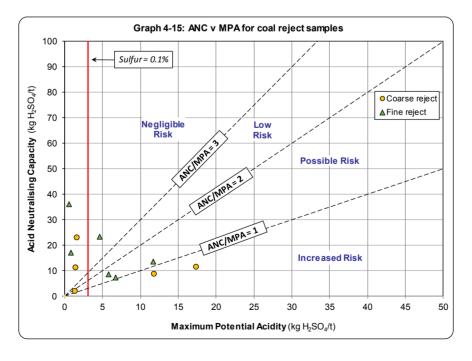
Based on the median pH and EC values, the coal reject samples tested are generally regarded as having a slightly 'High' soil pH and 'Low' salinity characteristics, as indicated by the distribution of samples corresponding to each pH and salinity class.

The pH and EC tests were completed on pulverised samples ($\leq 75 \mu$ m) with a large surface area in contact with the leaching solution, thereby providing greater potential for dissolution and reaction, and represent an initial 'worst case' scenario. While sulfide oxidation in some coal reject materials may contribute to increases in the salinity of leachate in the short term, it is expected that in the longer term the salinity from bulk coal reject materials will stabilise and potentially diminish over time at a concentration relative to the weathering/erosion of the materials as salts are flushed from the material matrix and a state of equilibrium develops.

Sulfur: The total sulfur content of the 11 coal reject samples ranges from 0.12 to 0.82% S and has an elevated median value of 0.38% S, compared with the median crustal abundance value of 0.07% S in unmineralised soils (Bowen, 1979; INAP, 2022). **Graph 4-13** illustrates the total sulfur content of the coal reject materials. The results demonstrate that most samples have a total sulfur concentration greater than median crustal abundance.

Sulfide sulfur: Due to the elevated total sulfur content of most of the coal reject samples, all of the samples were tested for sulfide using the Scr method. The test results show that on average, approximately 40% of the total sulfur is present as sulfide and the remainder of the total sulfur is likely to be present as organic sulfur or sulfate.


MPA: Based on the sulfide content, the MPA that could be generated by the 11 coal reject samples ranges from 0.6 to 17.4 kg H_2SO_4/t , and has a moderate median value of 4.7 kg H_2SO_4/t .


ANC: The ANC for the 11 coal reject samples ranges from 1.8 to 36 kg H_2SO_4/t and has a median value of 11.3 kg H_2SO_4/t , which is over twice the median MPA.

ANC:MPA ratio: The ANC:MPA ratio of the 11 coal reject samples ranges from 0.6 to 65.3 (median of 1.5). In simplistic terms, this means that most coal reject materials have excess ANC over MPA.

NAPP: The calculated NAPP values range from -35.4 to +6.1 kg H_2SO_4/t , with a negative median value of -2.7 kg H_2SO_4/t . The NAPP data is presented in **Graph 4-14** and shows that while most of the coal reject samples have negative NAPP value or a value that is close to zero, two coarse reject samples have a slightly positive NAPP value. Overall, as a bulk mixed material, the risk of generating any significant amounts of acidity from these materials is considered to be low.

Graph 4-15 shows a plot of ANC versus MPA for the 11 samples tested by material type from the Vulcan and Jupiter targets, respectively. ANC:MPA ratio lines have been plotted on the figures to illustrate the factor of safety associated with the samples in terms of potential for generation of acidity. Those samples with an ANC:MPA ratio of greater than 2 and a sulfide content of <0.1% S are considered to represent material with a high factor of safety and a very low risk of generating acidity (COA, 2016c; INAP, 2022).

The Acid Base Account result show that six coal reject samples plot in the negligible to low-risk domains, three samples plot in the possible risk domain (i.e., the ANC:MPA ratio is between 1 and 2) and two (coarse reject) samples plot in the increased risk domain (i.e., the ANC:MPA ratio is less than 1). Overall, as a bulk mixed material it is expected that the coal reject materials will have a relatively low risk of generating acid.

Coal rejects produced at the Project will be co-disposed with waste rock material. From a geochemistry viewpoint, co-disposal of any coarse and fine reject materials would be beneficial. Coal reject materials typically remain moist and any oxidation will only occur at surface (i.e., the fine reject will fill the gaps between the coarse reject particles and generally limit oxygen ingress). Similarly, disposal of a small amount of mixed coarse and fine reject materials within waste rock cells would be beneficial as waste rock typically has very low sulfur content and excess ANC. This approach to coal reject management has been successfully used at a number of existing coal mining operations in the Bowen Basin including Middlemount Coal Mine (RGS, 2013).

Table 4-4 provides a summary of the geochemical classification criteria used by RGS to classify the acid forming nature of the coal reject samples, and a breakdown of the number of samples in each classification category.

Geochemical Classification	Total Sulfur¹ (%)	NAPP (kg H₂SO₄/t)	ANC:MPA Ratio	No. Samples (n = 11)
Non-Acid Forming (Barren) ²	≤ 0.1	-	-	5
Non-Acid Forming	> 0.1	≤ -5	≥2	1
Uncertain	> 0.1	> -5 and ≤ +5	< 2	4
Potentially Acid Forming	> 0.1	> +5	< 2	1

 Table 4-4: Geochemical classification criteria for coal reject materials

Notes:

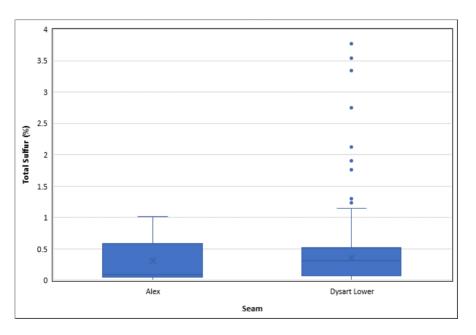
1. If total sulfur is less than or equal to 0.1% S, the NAPP and ANC:MPA ratio are not required for material classification as the sample is essentially barren of oxidisable sulfur.

2. A sample classified as NAF can be further described as 'barren' if the total sulfur and/or sulfide sulfur content is less than or equal to 0.1% S, as the sample essentially has negligible acid generating capacity.


The Acid Base Account test data presented in **Table B3 (Attachment B)** and discussed in this section have been used to classify the acid forming nature of the 11 coal reject samples tested. The results in **Table 4-4** demonstrate that of the 11 samples tested, five samples are classified as NAF (Barren), one sample is classified as NAF, four samples are classified as Uncertain and one sample is classified as PAF. The classification criteria reflect Australian (COA, 2016c) and international (INAP, 2022) guidelines for the classification of mining waste materials.

Overall, the Acid Base Account results confirm that most of the coal reject materials represented by the samples tested have relatively low sulfide content, excess ANC, and are classified as NAF. As a bulk mixed material, it is expected that coal reject will have a relatively low risk of generating acidic drainage. Co-disposal of coarse and fine reject materials and subsequent disposal with waste rock materials is likely to be beneficial and eliminate any residual risk.

4.1.3 Coal


Seepage may occur from mined coal temporarily stockpiled at the ROM area prior to processing at the CHPP. Based on the total sulfur content of a range of coal samples from the target seams (Alex and Dysart Lower) (412 samples) it is likely that the coal materials will have similar geochemical characteristics to the coal reject materials described in **Section 4.1.2**. **Graph 4-16** shows the total sulfur distribution in raw coal materials for the target coal seams. The results demonstrate that approximately 75% of the raw coal material represented by the samples tested has a relatively low total sulfur content <0.5% S. It should also be noted that approximately half of the total sulfur content is likely to be present as organic sulfur which has negligible capacity to generate acid.

Graph 4-16: Total sulfur distribution for raw coal samples

Graph 4-17 shows a "box and whisker" total sulfur plot for the target Alex and Dysart Lower coal seams using the same dataset (412 samples) used to generate **Graph 4-16**. The results show that the mean, median and 75th percentile total sulfur values in coal are low and generally at or below 0.5% S. While a small number of higher total sulfur outliers occur for the Dysart Lower seam most samples have lower total sulfur content, Available sulfur speciation indicates that approximately half of the total sulfur will be present as organic sulfur, which has negligible capacity to generate acid.

Graph 4-17: Total sulfur "box and whisker" plot for raw coal samples

In terms of potential impacts from the ROM coal stockpile, it is expected that the quality of any leachate will be similar to that of coal reject materials described in **Section 4.1.2**. As is standard practice at coal mining operations in the Bowen Basin, any surface runoff and seepage from the ROM coal stockpile will be monitored for quality and managed in the mine water management system as part of the Water Management Plan.

4.2 Multi-Element Concentration in Solids

Multi-element scans were carried out on 10 mining waste samples (i.e., six composite samples of waste rock and four composite samples of coal reject materials) as described in **Section 3.2.1** to identify any elements (metals/metalloids) present at concentrations that may be of environmental concern with respect to materials handling, storage, revegetation and water quality.

To provide relevant context, RGS has compared the total metal/metalloid concentration in samples to National Environmental Protection Council (NEPC) Health-based Investigation Levels (HIL(C)) for soils in public open spaces (NEPC, 2013).

The results from multi-element testing (total metals/metalloids) of the 10 selected mining waste samples are presented in **Table B4 (Attachment B)**. The results indicate that the sample materials have low total metal and metalloid concentrations in solids below the applied NEPC (HIL(C)) guideline for soils.

The results from multi-element testing (total metals/metalloids) of the 10 selected mining waste samples are discussed with respect to median crustal abundance in un-mineralised soils in **Section 4.3**.

4.2.1 Geochemical Abundance Index

Total metal/metalloid concentrations in mining waste materials can be compared to the median crustal abundance for un-mineralised soils (Bowen, 1979, COA, 2016c and INAP, 2022). The extent of enrichment is reported as the Geochemical Abundance Index (GAI), which relates the actual concentration in a sample with the median (or average) crustal abundance on a log₁₀ scale. The GAI is expressed in integer increments from 0 to 6, where a GAI value of 0 indicates that the element is present at a concentration less than, or similar to, the median crustal abundance; and a GAI value of 6 indicates approximately a 100-fold enrichment above median crustal abundance (see **Table 4-5**).

GAI	Enrichment Factor	GAI	Enrichment Factor
0	Less than 3-fold enrichment	4	24 – 48 fold enrichment
1	3 – 6 fold enrichment	5	48 – 96 fold enrichment
2	6 – 12 fold enrichment	6	Greater than 96 fold enrichment
3	12 – 24 fold enrichment		

Table 4-5: Geochemical abundance index values and enrichment factors

As a general rule, a GAI of 3 or greater signifies enrichment that may warrant further examination. This is particularly the case with some environmentally important 'trace' elements, such as arsenic, chromium, cadmium, copper, lead, selenium and zinc, more so than with major rock-forming elements, such as aluminium, calcium, iron, manganese and sodium.

Elements identified as enriched may not necessarily be a concern for revegetation, drainage water quality or public health, but their significance should still be evaluated. While the GAI provides an indication of metals/metalloids that may be enriched relative to the global average crustal abundance, the following points should also be considered:

- The median crustal abundance varies between different literature sources, thereby affecting the calculated GAI values.
- Samples that are enriched relative to the median crustal abundance, do not necessarily leach metals/metalloids at elevated concentrations. The mobility of metals/metalloids is dependent on mineralogy, adsorption/desorption and the environment in which it occurs.

Similarly, even if an element is not enriched, it does not mean it will never be a concern, as under some conditions (e.g., low pH) the solubility of common environmentally important elements, such as aluminium, copper, cadmium, iron and zinc increase significantly.

01_2022014_Geochemical Assessment of Waste Rock, Coal Reject and Coal_Rev 03

Table B4 (Attachment B) provides total metal/metalloid concentrations for the 10 composite mining waste samples described in **Section 3.2.1**. The relative enrichment of metals/metalloids in the samples compared to median crustal abundance (the Geochemical Abundance Index - GAI) is presented in **Table B5** (Attachment B).

The GAI results indicate that of the metals/metalloids measured, none of the 10 samples are enriched compared to median crustal abundance (i.e., all samples have a GAI < 3). While the concentration of selenium appears slightly elevated relative to median crustal abundance (GAI = 2) this is generally an artefact of the concentrations used in the GAI calculation (i.e., half the laboratory LoR of 5 mg/kg).

The potential solubility of any metals/metalloids in the sample materials was investigated further through water extract and KLC tests as presented in **Sections 4.4** and **4.5**, respectively.

A total of six composite waste rock samples were selected for physical characterisation as they are classified as NAF (Barren) and could potentially report to the outer surfaces of final landforms and could also be earmarked for use in other site infrastructure and rehabilitation works. The tests focussed on exchangeable cations and allowed calculation of the effective cation exchange capacity and exchangeable sodium percentage values. The test results and calculated values are provided in **Table B4** (**Attachment B**) and summarised below.

4.3 Soil Characteristics and Sodicity

4.3.1 Soil Characteristics

The effective cation exchange capacity (eCEC) results for the six composite waste rock samples are presented in **Table B4** (Attachment B). The results indicate that the eCEC of the six samples ranges from 4.8 to 18.6 meq/100g and is typically in the low to moderate range as described in **Table 4-6** (Hazelton and Murphy, 2007). The calcium:magnesium ratio is low and less than one in all samples tested. For waste rock materials with a low to moderate eCEC value and low calcium:magnesium ratio, some fertiliser and gypsum addition may be required to provide a reasonable growth medium for vegetation roots as part of revegetation and rehabilitation activities.

eCEC Rating	CEC (meq/100g)	
Very low	<6	
Low	6 – 12	
Moderate	12 – 25	
High	25 – 40	
Very high	>40	

Table 4-6: Ratings for cation exchange capacity

4.3.2 Sodicity

The exchangeable sodium percentage (ESP) results for the six composite waste rock samples are presented in **Table B4** (Attachment B). The ESP results for the samples range from 10.8 to 24.6% and are typically elevated as would be expected for waste rock (overburden/interburden) materials found in this part of the Bowen Basin. Generally, samples with ESP values less than 6% are considered non-sodic, and those greater than 14% are considered strongly sodic and may be susceptible to dispersion and erosion (Isbell, 2002; and Northcote and Skene, 1972). Sodicity can result in surface crusting, low infiltration and hydraulic conductivity within the affected soils (Hazelton and Murphy, 2007).

Overall, the results of the ESP tests indicate that most waste rock materials represented by these samples are likely to be moderately to strongly sodic; and consequently, may be susceptible to dispersion and erosion and should be managed appropriately. The addition of gypsum to sodic waste rock materials has the potential to reduce the sodicity and potential for dispersion and erosion.

4.4 Water Quality Static Tests

There are no specific regulatory criteria for metal/metalloid concentrations in leachate from mining waste materials on mine sites in Queensland. As such, RGS has compared the multi-element results in water extracts from the ten composite mining waste samples (six waste rock and four coal reject) from the Project, described in **Section 4.2**, with Australian guidelines for livestock drinking water and aquatic freshwater ecosystems (ANZECC & ARMCANZ, 2000; ANZG, 2018) guideline values. These guidelines are provided for context only and are not intended to be interpreted as "maximum permissible levels" for site water storage or discharge.

It should also be recognised that direct comparison of geochemical data with guideline values can be misleading. For the purpose of this study, guideline values are only provided for broad context and should not be interpreted as "maximum" values or "trigger" values. Using sample pulps (ground to pass a 75 µm sieve size) provides a very high surface area to solution ratio, which encourages mineral reaction and dissolution of the solid phase. Therefore, the results of screening tests on water extract solutions are assumed to represent a 'worst case' scenario for initial surface runoff and seepage from mining waste materials.

The results from multi-element testing of water extracts (1:5 solid:water) from the 10 mining waste samples are presented in **Table B6** (Attachment B). The pH of the water extracts for the waste rock samples representing the Vulcan target ranges from pH 8.2 to 8.6 and is considered to be slightly alkaline. The pH of the water extracts for the waste rock samples representing the Jupiter target ranges from 6.8 to 7.1 and is considered to be neutral. The pH of the water extracts for the four coal reject samples ranges from 5.8 to 8.6. In all cases it is expected that some alkalinity will be added to contact water from these materials as the deionised water used in the tests ranged from pH 5.4 to 5.7. The pH results for all samples (except one coarse reject sample) are within the range (pH 6 to 9) for 95% species protection in freshwater aquatic ecosystems as set out in ANZECC & ARMCANZ (2000) and ANZG (2018).

The water extracts from the 10 mining waste samples have moderate EC values ranging from 54 to 788 μ S/cm, with higher values seen in the samples representing the Vulcan target (median 544 μ S/cm) than those representing the Jupiter target (median 216 μ S/cm) or coal reject (median 91 μ S/cm), indicating low to moderate salinity levels (and low to moderate concentrations of dissolved solids).

The total alkalinity in the water extracts from the Vulcan waste rock samples ranges from moderate to elevated (564 to 2,980 mg CaCO₃/L). The total alkalinity from the two composite samples from the Jupiter target is lower and ranges from 34 to 144 mg CaCO₃/L. For the coal reject samples, the total alkalinity ranges from 24 to 1,032 mg CaCO₃/L. All of the alkalinity in the water extract samples is in the form of bicarbonate (HCO₃), with carbonate values being less than the laboratory LoR (1 mg/L). The acidity in the water extracts from the waste rock samples is generally low, ranging from less than the laboratory LoR (1 mg/L) to 3 mg CaCO₃/L for Vulcan samples, 5 to 8 mg CaCO₃/L for Jupiter samples, and 19 to 178 mg CaCO₃/L for coal reject samples, respectively, leading to a positive net alkalinity value for all samples.

The total concentration of major ions in the water extracts is dominated by bicarbonate, sodium, chloride and sulfate. The concentration of sulfate in the water extracts from all 10 samples ranges from 18 to 46 mg/L (median 29 mg/L), and therefore is more than an order of magnitude below the applied (ANZECC & ARMCANZ, 2000; ANZG, 2018) water quality guideline criterion (1,000 mg/L) for livestock drinking water for this anion.

The concentration of trace metals/metalloids tested in the water extracts is typically low and predominantly below the laboratory LoR. Most metal/metalloid concentrations tested in the water extracts are below the applied water quality guideline criteria. The main exceptions are aluminium (four samples) and copper (three samples), which have concentrations in some of the water extracts above the applied freshwater aquatic ecosystem water quality guideline value for 95% species protection (ANZECC & ARMCANZ, 2000; ANZG, 2018), but are below the applied guideline values for livestock drinking water.

Given that the pH values in the relevant water extracts are pH neutral to slightly alkaline, the elevated aluminium concentrations in these water extracts may in some part be due to the formation of colloidal materials in the water extracts, which can pass through the (0.45 μ m filter) filtration stage used in the standard

laboratory preparation procedure. This can occur due to the physical preparation of the sample at the laboratory to pass a 75 μm particle size.

On the basis of these results, it is expected that the risk of potential impact on the quality of surface runoff and groundwater from bulk mining waste materials at the Project will be low. Based on the water extract results presented in this section, the quality of any leachate from any co-disposed coal reject materials would be similar to leachate at areas of the dumps where co-disposal does not occur.

The dynamic quality of mining waste contact water (if these materials are left exposed to the atmosphere (i.e., oxidising conditions) and any potential risk to water resources at the site was investigated further using KLC tests in **Section 4.5**.

4.5 Water Quality Kinetic Tests

KLC tests were completed on six composite samples of mining waste materials (four waste rock and two coal reject samples) using the methodology described in **Section 3.2.2** and **Attachment A**. The composition of the six composite samples used in the KLC tests is summarised in **Table 4-7** and detailed in **Table B7** (**Attachment B**). The six KLC tests cover the range of waste rock (sandstone, claystone and siltstone) and coal reject (coarse and fine reject) likely to be generated by the Project. The KLC tests on waste rock were operated for a period of six months from June 2019 to December 2019 under a monthly watering and leaching regime. The KLC tests on coal reject were operated from December 2019 to June 2020 under a monthly watering and leaching regime. The KLC tests were operated following mining industry guidelines for such tests (AMIRA, 2002; COA, 2016).

The leachate results from the KLC test program are presented alongside Australian water quality guideline values for livestock drinking water quality (ANZECC & ARCANZ, 2000; ANZG, 2018). These guidelines are provided for context only and are not intended to be interpreted as "maximum permissible levels" for site water storage or discharge. It should be noted that the KLC samples were crushed to pass a 10 mm sieve size, where required, and therefore have a high surface area for potential geochemical reaction. The ratio of sample to water in the KLC tests was approximately 3:1 (w/v) (i.e., concentrated), whereas the ratio of sample to water generally used in tests (where results can be compared against guideline concentrations to provide relevant context) is over an order of magnitude more dilute at 1:5 (w/v). Whilst approximate comparisons against guideline concentrations can be helpful in some situations to provide relevant context, such comparisons cannot be directly extrapolated to the field situation at the Project.

KLC Sample Number	RGS Composite ID	Description
KLC1	Composite 2 Waste Rock	Mainly Vulcan sandstone
KLC2	Composite 4 Waste Rock	Mainly Vulcan claystone
KLC3	Composite 5 Waste Rock	Mainly Jupiter sandstone
KLC4	Composite 6 Waste Rock	Mainly Jupiter siltstone
KLC5	Composite Fine Reject	Vulcan Fine Reject
KLC6	Composite Coarse Reject	Vulcan Coarse Reject

Table 4-7: Composite mining waste samples sel	lected for KLC tests
---	----------------------

The monthly KLC test results for the four composite waste rock samples are presented in **Attachment C**. Tables **KLC 1** to **KLC 4** provide the KLC test data for seven leach events on waste rock samples (over six months), selected components of which are also shown graphically. For the two coal reject samples (**KLC 5** and **KLC 6**), data from the seven leach events (over six months) is provided in **Attachment C**. The KLC test results indicate that:

• Leachate from the six KLC tests has a pH in the range of 5.55 to 8.27 over the test period. Whilst some pH fluctuations are noted within this range, the majority of pH values generally lie in the range pH 6 to 8. The lowest pH value is still greater than the deionised water used in the test program. Therefore, it is

likely that the mining waste materials add some alkalinity to contact/leaching water. These results suggest that pH values in any surface runoff and seepage from bulk mining waste materials exposed to oxidising conditions will be in the range pH 6 to 8.

- Leachate from the six KLC tests has an EC value in the range of 54 to 1,796 µS/cm over the test period. Most EC values in leachate show a downward trend over time; however, leachate from KLC1 (Vulcan Sandstone) shows and increasing EC trend, before reducing again at the end of the test period. These results indicate EC values from most bulk mining waste materials exposed to oxidising conditions will be low to moderate. The slightly elevated EC value in the initial 'first flush' from the some of the mining waste sample materials is probably due to the increased solubility of minerals through crushing/preparation of the sample materials before loading into the KLC test columns.
- The acidity value in leachate from the six KLC tests over the test period is very low, ranging from below the laboratory LoR (<1 mg/L, as CaCO₃) to 8 mg/L. The alkalinity values in leachate from the KLC tests are also relatively low, but generally more than sufficient to create net alkalinity values that are either positive or close to zero (i.e., the alkalinity is predominantly greater than the acidity) during the test period.
- The concentration of major ions in leachate from the six KLC tests is typically dominated by variable concentrations of sodium, chloride and sulfate (and bicarbonate). Lower concentrations of other major ions are also likely to be present in leachate from these materials. The concentration of calcium in leachate from the fine rejects (KLC 5) is an order of magnitude greater than observed in leachate from the other KLC tests.
- The sulfate release rate from the six KLC samples generally shows a relatively stable trend over the test
 period for most samples. The exception is the sulfate release rate from the fine rejects sample which
 increases before decreasing towards the end of the test period. The highest sulfate release rate is
 displayed by the fine rejects (KLC 5). Notwithstanding, the sulfate concentration in leachate from all of
 the KLC tests is well below the applied guideline value of 1,000 mg/L (ANZECC & ARMCANZ, 2000;
 ANZG, 2018).
- The four waste rock materials used in the KLC tests retain at least ~81.3% of their inherent total sulfur content after six months of exposure to idealised oxidising conditions, which reflects a slow rate of sulfide oxidation (and low potential for acid generation) for these materials. The two coal reject samples show similar characteristics and retain at least 95% of their inherent total sulfur content at the end of the six month test period.
- The four KLC waste rock samples retain at least ~99.1% of their inherent ANC value after six months of
 exposure to idealised oxidising conditions, which reflects the slow release of alkalinity from these
 materials. The two coal reject samples show similar sample characteristics and retain at least 88% of their
 inherent ANC value at the end of the six month test period.
- The concentration of trace metals/metalloids in the leachate from the six KLC tests is generally low and typically below the laboratory LoR. Most trace metals/metalloids are therefore sparingly soluble at the current pH of the KLC leachate. The concentrations of all metals/metalloids are typically below the applied water quality guideline criteria for livestock drinking water (ANZECC & ARMCANZ, 2000; ANZG, 2018). The only exception is selenium in some of the leachate collected from the two coal reject samples, which show concentrations marginally above the livestock drinking water low risk trigger levels (0.02 mg/L). Based on the KLC results presented in this section, the quality of leachate from any co-disposed coal reject materials in terms of trace metal/metalloid concentrations would be similar to leachate at areas of the dumps where co-disposal in cells was not used.
- The sulfate generation rate results obtained for the six KLC test samples have been used to determine the
 rate of sulfide oxidation in these materials. Most sulfate salts generated from sulfide reaction involving
 materials with a relatively low sulfide sulfur concentration are highly soluble, and therefore will be collected
 in column leachate. The dissolved sulfate (and calcium) concentrations in most of the KLC leachate are
 typically much less than the solubility limit of gypsum (CaSO₄), for example, which indicates that sulfate
 generation is not controlled by gypsum dissolution in the KLC test materials. Therefore, the sulfate

concentrations and oxidation rate calculations provide reasonable estimates of these parameters and the results align well with existing static and dynamic geochemical data derived from a wide range of mining waste materials (AMIRA, 1995). The sulfate generation rate and associated sulfide oxidation rate for the KLC tests are shown in **Table 4-8**.

• The sulfate generation rate from the KLC samples ranges from 1.71 to 24.78 mg/kg/week which is equivalent to a sulfide oxidation rate ranging from 6.99 x 10⁻¹⁰ to 1.01 x 10⁻⁸ kg O₂/m³/s. Mining waste materials with an oxidation rate less than 5 x 10⁻⁸ kg O₂/m³/s and a moderate ANC level have an increased factor of safety and are likely to generate leachate that is pH neutral and/or has a low level of acidity (AMIRA, 1995; Bennett *et al.*, 2000). Hence, all of the mining waste materials tested fall into this category. Overall, the KLC results reflect the range of material characteristics predicted from the static geochemical test results shown in **Section 4.1**.

Potential implications of these results with respect to the management of the mining waste materials at the Project are discussed further in **Section 5**.

KLC Sample Number	Sample Description	Sulfate Generation Rate (mg/kg/week)	Oxidation Rate (kg O ₂ /m ³ /s)
KLC1	Vulcan sandstone	3.42	1.37 x 10 ⁻⁹
KLC2	Vulcan claystone	1.71	6.99 x 10 ⁻¹⁰
KLC3	Jupiter sandstone	3.97	1.66 x 10 ⁻⁹
KLC4	Jupiter siltstone	4.32	1.78 x 10 ⁻⁹
KLC5	Fine reject	24.78	1.01 x 10 ⁻⁸
KLC6	Coarse reject	7.82	3.18 x 10 ⁻⁹

Table 4-8: Sulfate generation and sulfide oxidation rates for KLC tests

5 DISCUSSION

5.1 AMD Potential and Management

The results of the static and kinetic geochemical tests demonstrate that the overwhelming majority of the waste rock materials contain negligible sulfide content, have excess ANC, and are classified as NAF. These samples represent materials with a very low risk of acid generation and a high factor of safety with respect to generating acidic drainage.

The static and kinetic geochemical test results for coal reject demonstrate that most of the coal reject materials represented by the samples tested have relatively low sulfide content and excess ANC. As a bulk mixed material, it is expected that coal reject will be classified as NAF and have a relatively low risk of generating acidic drainage. Based on the KLC results presented in **Section 4.5**, apart from slightly elevated sulfate, it is expected that the quality of leachate from any coal reject materials co-disposed with waste rock would be similar to leachate from areas of the dumps where co-disposal does not occur.

It is expected that from a geochemistry viewpoint, co-disposal of coarse and fine reject materials within waste rock dumps would be beneficial. This is because coal reject materials typically remain moist and any oxidation will only occur at surface (i.e., the fine reject will fill the gaps between the coarse reject particles and generally limit oxygen ingress). The coarse rejects also would also provide some geotechnical stability to a mixed reject cell structure. The disposal of mixed coarse and fine reject materials within waste rock dumps is also a low-risk strategy as the much larger volume of waste rock typically has very low sulfur content and excess ANC. This mining waste management strategy is currently used at a number of coal mines in the Bowen Basin.

Further management measures to reduce the risk of the generation of AMD are presented in Section 5.4.

5.2 Multi-Element Composition and Water Quality

5.2.1 Multi-Element Composition and Enrichment

The multi-element concentrations of metal/metalloids in mining waste materials are presented in **Section 4.2**, along with a comparison against applied guideline values and median crustal abundance in soils. The results indicate that the mining waste materials are not significantly enriched with metals/metalloids compared to guideline values and median crustal abundance in un-mineralised soils.

5.2.2 Water Quality

The static and kinetic geochemical test results presented in this report indicate that the surface runoff and seepage from NAF mining waste materials is likely to be pH neutral to slightly alkaline and have a low to moderate EC value indicating low to moderate salinity levels (and low to moderate concentrations of dissolved solids). Surface runoff and seepage from mining waste materials is likely to fall within the range for 95% species protection in freshwater aquatic ecosystems (pH 6 to 9) as set out in ANZECC & ARMCANZ (2000) and ANZG (2018).

The major ion concentrations in leachate from mining waste materials are relatively low and dominated by sodium, chloride, bicarbonate and sulfate. Lower concentrations of other major ions are also likely to be present in leachate from these materials. The sulfate concentration in leachate from all mining waste samples is well below the applied ANZECC & ARMCANZ and ANZG stock water quality guideline criterion (1,000 mg/L).

The water extract and KLC test results for mining waste materials indicate that most trace metals/metalloids are sparingly soluble, and that the concentration of dissolved metals/metalloids in surface runoff and seepage is relatively low, predominantly below the laboratory LoR, and below the applied water quality guideline criteria. Minor exceptions may include aluminium, copper and selenium in pore water, which can occasionally be greater than the applied guideline concentrations (ANZECC & ARMCANZ, 2000; ANZG, 2018) in selected samples. The KLC test data over the test period indicates that the concentrations of most dissolved trace metal/metalloid in contact water are typically low and well within applied livestock drinking water guideline values.

Whilst significantly elevated metal/metalloid concentrations in contact water are not expected at the Project, it is recommended that the suite of metals/metalloids described in the static and KLC test in this report be included from time to time, where appropriate, in the site water quality monitoring program.

It is recommended that samples of surface runoff and seepage from areas used to store mining waste materials and coal be included in the site water quality monitoring program.

5.3 Revegetation and Rehabilitation

From a soil chemistry viewpoint, bulk waste rock materials are classified as NAF and are likely to be pH neutral to slightly alkaline and have low to moderate levels of salinity. Most waste rock materials may be susceptible to dispersion and erosion, although these material characteristics may be improved to some extent by the addition of gypsum. In addition, fertiliser supplementation may also need to be considered for surface mining waste materials for the purpose of providing a reasonable growth medium for revegetation and rehabilitation.

Additional confirmatory sampling and testing should be completed on bulk mining waste materials when available during the operational phase of the Project to determine the best management option for progressive rehabilitation of these materials during operations and at mine closure. Sampling should focus on collecting representative samples of any waste rock (i.e., spoil) materials planned to be used at the surface of final landforms to supplement any existing subsoil and topsoil salvaged re-used in revegetation and rehabilitation activities. Testing should include typical soil parameters including pH, EC, exchangeable cations, organic matter, total organic carbon, Emerson aggregate, particle size distribution, and nutrients (including available K, P, S, as well as nitrogen (N) species (TKN, TN, nitrite and nitrate).

5.4 Management Measures

Table 5-1 provides a summary how the waste rock, coal reject and coal materials will be managed through all stages of the mine life including construction, operations, rehabilitation and decommissioning.

Project Phase	Waste Rock	Coal Rejects	Coal
Construction	Stored at out-of-pit WRD	None produced	None produced
Operations	Stored at out-of-pit WRD and/or backfilled in-pit.	Co-disposed / backfilled within cells in-pit or ex-pit waste rock dumps. Contact water monitored for quality and managed in the mine water management system as part of Water Management Plan	Temporarily stockpiled at ROM and product coal stockpiles. Contact water monitored for quality and managed in the mine water management system as part of Water Management Plan
Rehabilitation	Final landforms rehabilitated/ revegetated	Final landforms rehabilitated/ revegetated	ROM removed and footprint rehabilitated/revegetated
Decommissioning	Final landform performance monitoring moving towards lease relinquishment	Final landform performance monitoring moving towards lease relinquishment	None

Table 5-1: Material management over mine	life
--	------

5.4.1 Waste Rock

5.4.1.1 Monitoring of waste rock material

This geochemical assessment has found that waste rock has low sulfur content, excess ANC, and is classified as NAF. Bulk waste rock has a high factor of safety and a very low risk of generating acid, saline or metalliferous drainage. Notwithstanding, monitoring of waste rock will continue throughout operations. Representative samples of any carbonaceous waste rock materials will be collected ahead of mining from blast hole drill cuttings to be assessed to identify any PAF material.

The drillhole cutting samples will be sent to an external National Association of Testing Authorities, Australia, (NATA) accredited laboratory for total sulfur (LECO analyser) analysis.

The geochemical assessment has demonstrated that bulk waste rock materials have very low total sulfur content and samples with a total sulfur content up to 0.3 %S are either NAF or very low risk. This finding is consistent with other open cut coal mines in this area of the Bowen Basin, which mine similar coal measures within similar stratigraphy. Therefore, a total sulfur cut-off value of 0.3 % will be used to identify any carbonaceous waste rock that may have a reduced factor of safety (possibly PAF).

5.4.1.2 Management of PAF waste rock material

Whilst the results of this assessment indicate that the occurrence of any PAF materials is unlikely, if any carbonaceous waste rock is identified as having a reduced factor of safety (possibly PAF) through sampling and total sulfur analysis, this will be selectively handled and buried within NAF waste rock in a manner similar to that described for coal rejects in **Table 5-1**. Short term planning and truck management planning will be updated upon identification of any carbonaceous waste rock that is possibly PAF to ensure that this material is hauled directly to the correct emplacement areas used for storing coal rejects and without storage in temporary stockpiles.

Any carbonaceous waste rock material identified as possibly PAF (and all coal reject materials) will be preferentially stored in the in-pit waste rock dumps when sufficient capacity is available and below predicted post-mining groundwater level, where practical, to reduce the potential oxidation of materials in the longer term post-closure (**Figure 5-1**). Early in the mine life when there is insufficient storage capacity within the open pit areas, possibly PAF carbonaceous waste rock (and all coal rejects) will be stored in ex-pit emplacements (**Figure 5-2**). In all cases, these materials will be buried in the core of the waste rock emplacements, at least 5 m away from final outer surfaces of the emplacements and under at least 5 m of NAF waste rock materials⁶. To further minimise any risk associated with out-of-pit emplacements, any PAF carbonaceous waste rock (and all coal reject materials) will be placed within areas that slope/drain toward the open pit and any seepage will be monitored and managed within the mine water management system as part of the Water Management Plan.

The extents of any PAF carbonaceous waste rock (and all coal reject materials) transferred to emplacement areas will be tracked with regular surveys. Spatial data files in an appropriate format will be created to record the extents/dimensions of the storage areas.

All possibly PAF carbonaceous waste rock and all coal reject materials will be paddock dumped, traffic compacted and covered by NAF overburden to limit the infiltration of air and water into covered materials.

5.4.1.3 Emplacement sampling and testing

To confirm the effectiveness of the waste rock (and coal reject) management procedures, strategic sampling and total sulfur testing of emplaced materials will be undertaken on an annual basis over the operational life of the Project. The results of this process will be used to validate that emplacements are being constructed

⁶ If sufficient NAF waste rock material is available then the 5 m of NAF waste rock should be increased to 10 m of NAF waste rock.

according to design specifications and that any PAF carbonaceous waste rock (and all coal reject materials) are encapsulated with at least 5 m of NAF waste rock materials⁶.

Representative samples of emplaced materials will be collected and analysed externally by a NATA accredited laboratory for total sulfur . As above, samples with a total sulfur concentration a total sulfur concentration of less than or equal to 0.3 %S will be classified as NAF and greater than 0.3 %S will be classified as PAF.

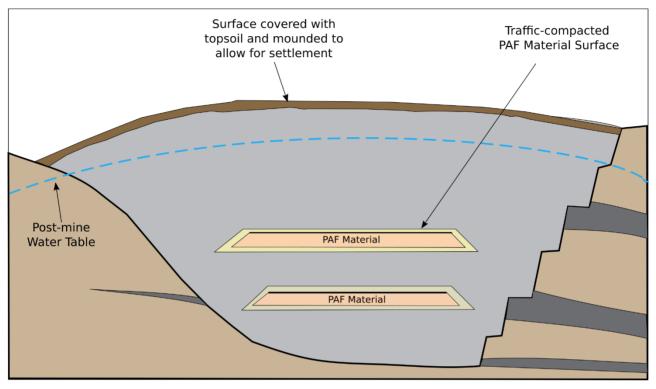


Figure 5-1: Schematic cross-section of in-pit PAF material emplacements

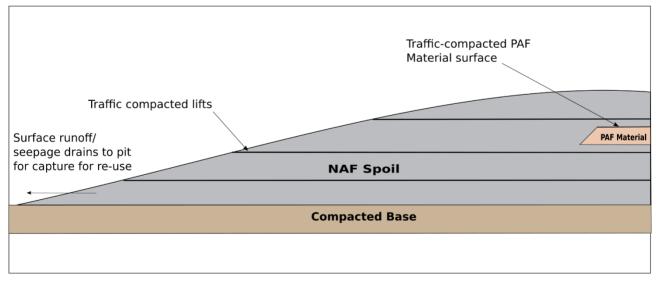


Figure 5-2: Schematic cross-section of ex-pit PAF material emplacement

5.4.2 Coal Rejects

As a bulk mixed material, it is expected that coal reject will have a relatively low risk of generating acidic drainage. Notwithstanding, co-disposal of coarse and fine reject materials and subsequent encapsulation within NAF waste rock materials is likely to be beneficial and eliminate any residual risk.

If it is assumed that up to 10 % of ROM coal will become coal reject at the CHPP, less than 2 % by volume of the materials in the emplacements will be coal rejects. As described in **Table 5-1** and **Section 5.4.1.2**, coal rejects will be preferentially placed within in-pit dumps, below the predicted post-mining groundwater table. Coal rejects will be co-disposed with any identified possibly PAF carbonaceous waste rock materials and traffic compacted which will minimise the available pore space within any PAF materials, reducing the risk of the any AMD generation by limiting the ingress of oxygen and water into the pore spaces. Rejects will be placed sufficiently deep within the emplacements that they are covered with a minimum of 5 m of NAF material and no closer than 5 m to the external surfaces of the emplacements⁶. If coal rejects are placed in ex-pit dumps they will be traffic compacted and covered as soon as practicable. Drainage from ex-pit dumps will be captured and directed toward the mine void. A risk assessment of the emplacement of coal rejects within ex-pit dumps is included in **Attachment E**.

5.4.3 Coal Rejects

As a bulk mixed material, it is expected that coal will have a relatively low reactive sulfur content and subsequently a low risk of generating AMD. Notwithstanding, seepage may occur from mined coal temporarily stockpiled at the ROM area prior to processing and in coal product stockpiles following processing at the CHPP.

Any water seeping from the coal stockpiles will be monitored for quality and managed in the mine water management system as part of Water Management Plan as described in **Table 5-1**.

5.4.4 Water Quality Monitoring

Surface run-off and seepage from the waste rock and coal reject emplacement areas and coal stockpiles will be monitored for quality and managed in the mine water management system as part of Water Management Plan as described in **Table 5-1**.

5.4.5 Contingency Measures

In the unlikely event that AMD is identified in surface runoff and/or seepage from emplacement areas or coal stockpiles, Vitrinite will investigate the potential source of the issue and implement any required additional sampling and testing measures. Remediation options may include addition of agricultural limestone to any identified PAF materials during placement and/or reducing the amount of time that any identified PAF material is exposed to weathering conditions prior to covering with NAF material.

6 CONCLUSIONS

RGS has completed a geochemistry assessment of mining waste (waste rock and coal reject) and coal materials at the Project. The main findings of the assessment are as follows:

- The overwhelming majority of the waste rock materials have low sulfide content, excess ANC, and are classified as NAF (Barren). These materials have a very low risk of acid generation and a high factor of safety with respect to potential for generation of acidity.
- Coal reject materials have relatively low sulfide content and excess ANC. As a bulk mixed material, it is
 expected that coal reject will be classified as NAF and have a relatively low risk of generating acidic
 drainage. Co-disposal of reject materials in waste rock dumps is likely to have a beneficial impact on the
 quality of the reject leachate.
- Coal is likely to have similar geochemical characteristics to coal reject materials and will be temporarily stockpiled at the ROM area prior to being transferred to the CHPP. As is standard practice at coal mining operations in the Bowen Basin, any surface runoff and seepage from the ROM coal stockpile will be monitored for quality and managed in the mine water management system as part of the Water Management Plan.
- Initial and ongoing surface runoff and seepage from mining waste materials is expected to be pH neutral to slightly alkaline and have a low level of salinity.
- There is no significant metal/metalloid enrichment in mining waste materials compared to applied guideline values and median crustal abundance in un-mineralised soils.
- Most metals/metalloids are sparingly soluble at the neutral to slightly alkaline pH of leachate expected from bulk NAF mining waste materials. Dissolved metal/metalloid concentrations in surface runoff and leachate from bulk NAF mining waste materials are expected to be low and unlikely to pose a significant risk to the quality of surface and groundwater resources at relevant storage facilities.
- NAF waste rock materials should be amenable to revegetation as part of rehabilitation activities, although, gypsum and fertiliser addition may need to be considered for sodic materials to limit dispersion and erosion and to provide a reasonable growth medium for revegetation and rehabilitation.

7 REFERENCES

ACARP (2008). Development of ARD Assessment for Coal Process Wastes. ACARP Project C15034. Report prepared by Environmental Geochemistry International and Levay and Co. Environmental Services, ACeSSS University of South Australia, July 2008.

AMIRA (1995). Mining waste Management: *Project P387 Prediction and Identification of Acid Forming Mining waste*. Australian Minerals Industry Research Association, Report prepared by EGi Pty Ltd, August 1995.

AMIRA (2002). *ARD Test Handbook: Project 387A Prediction and Kinetic Control of Acid Mine Drainage*. Australian Minerals Industry Research Association, Ian Wark Research Institute and Environmental Geochemistry International Pty Ltd, May 2002.

ANZECC & ARMCANZ (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT (2000). Now superseded by:

ANZG (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT (2018). Livestock drinking water (low risk trigger levels).

Australian Standard AS 4969.7 (2008). Analysis of acid sulfate soil – Dried samples – Methods of test. Method 7: Determination of chromium reducible sulfur (Scr). Standards Australia, June 2008.

Bennett, J.W., Comarmond, M.J. and Jeffery, J.J. (2000). *Comparison of Oxidation Rates of Sulfidic Mining wastes Measured in the Laboratory and Field*. Australian Centre for Mining Environmental Research, Brisbane.

Bowen, H.J.M. (1979). *Environmental Chemistry of the Elements*. Academic Press, New York.

COA (2016a). Leading Practice Sustainable Development Program for the Mining Industry - Mine Rehabilitation. Commonwealth of Australia, Canberra.

COA (2016b). Leading Practice Sustainable Development Program for the Mining Industry - Mine Closure. Commonwealth of Australia, Canberra.

COA (2016c). Leading Practice Sustainable Development Program for the Mining Industry - Managing Acid and Metalliferous Drainage. Commonwealth of Australia, Canberra.

DEHP (2013). *Application Requirements for Activities with Impacts to Land Guideline*. Queensland Department of Environment and Heritage Protection.

DME (1995). Draft Technical Guidelines for the Environmental Management of Exploration and Mining in *Queensland, Technical Guideline – Assessment and Management of Acid Drainage and Saline/Sodic Wastes*. Queensland Department of Minerals and Energy (DME).

Hazelton, P. and Murphy, B. (2007). Interpreting soil test results: What do all the numbers mean?. CSIRO publishing.

INAP (2022). *Global Acid Rock Drainage Guide (GARD Guide)*. Document prepared by Golder Associates on behalf of the International Network on Acid Prevention (INAP). June 2022 (<u>http://www.inap.com.au/</u>).

Isbell, RF. (2002). The Australian Soil Classification (revised edition). CSIRO Publishing. Victoria.

METSERVE (2019). Vulcan Complex Preliminary Project Description for Vitrinite. Mining and Energy Technical Services Pty Ltd. May, 2019.

Northcote, KH. and Skene, JKM. (1972). *Australian Soils with Saline and Sodic properties*. CSIRO Australia, Soil Publication No. 27, Canberra.

NEPC (2013). *National Environmental Protection (Assessment of Site Contamination) Measure (NEPM)*, Amendment of Schedule B1-B7 of 1999 version. National Environmental Protection Council (NEPC).

RGS (2013). Middlemount Coal Project – *Geochemical Assessment of Coal and Mining Waste Materials.* Document prepared for Middlemount Coal Pty Ltd by RGS Environmental Pty Ltd (RGS). 16 August.

RGS (2019). *Preliminary Geochemistry Results – Jupiter and Vulcan Target Prospects. Vulcan Complex.* Technical Memorandum prepared by RGS Environmental Pty Ltd for Vitrinite Pty Ltd. 18 July.

RGS (2020). *Geochemical Assessment of Waste Rock, Coal Reject and Coal. Vulcan Complex Project.* Report prepared by RGS Environmental Pty Ltd for Vitrinite Pty Ltd. 18 June.

Stewart, W., Miller, S., Thomas, J.E., and Smart R. (2003). Evaluation of the Effects of Organic Matter on the Net Acid Generation (NAG) Test. p. 211-222. In: Proceedings of the Sixth International Conference on Acid Rock drainage (Cairns, 12-18th July 2003).

Attachment A Geochemical Assessment of Mining Waste Materials

GEOCHEMICAL ASSESSMENT OF MINING WASTE MATERIALS

ACID GENERATION AND PREDICTION

Acid generation is caused by the exposure of sulfide minerals, most commonly pyrite (FeS₂), to atmospheric oxygen and water. Sulfur assay results are used to calculate the potential acidity that could be generated by the sample typically by determining the sulfidic S content directly. Pyrite reacts under oxidising conditions to generate acid according to the following overall reaction:

According to this reaction, the maximum potential acidity (MPA) of a sample containing 1% S as pyrite would be $30.6 \text{ kg H}_2\text{SO}_4/\text{t}$. The chemical components of the acid generation process consist of the above sulfide oxidation reaction and acid neutralization, which is mainly provided by inherent carbonates and to a lesser extent silicate minerals. The amount and rate of acid generation is determined by the interaction and overall balance of the acid generation and neutralisation components.

Net Acid Producing Potential

The net acid producing potential (NAPP) is used as an indicator of materials that may be of concern with respect to acid generation. The NAPP calculation represents the balance between the maximum potential acidity (MPA) of a sample, which is derived from the sulfide sulfur content, and the acid neutralising capacity (ANC) of the material, which is determined experimentally. By convention, the NAPP result is expressed in units of kg H₂SO₄/t sample. If the capacity of the solids to neutralise acid (ANC) exceeds their capacity to generate acid (MPA), then the NAPP of the material is negative. Conversely, if the MPA exceeds the ANC, the NAPP of the material is positive. A NAPP assessment involves a series of analytical tests that include:

Determination of pH and EC

pH and EC measured on 1:5 w/w water extract. This gives an indication of the inherent acidity and salinity of the waste material when initially exposed in a waste emplacement area.

Total sulfur content and Maximum Potential Acidity (MPA)

Total sulfur content is determined by the Leco high temperature combustion method. The total sulfur content is then used to calculate the MPA, which assumes that the entire sulfur content is present as reactive pyrite. Direct determination of the pyritic sulfur content can provide a more accurate estimate of the MPA.

Acid neutralising capacity (ANC)

By addition of acid to a known weight of sample, then titration with NaOH to determine the amount of residual acid. The ANC measures the capacity of a sample to react with and neutralise acid. The ANC can be further evaluated by slow acid titration to a set end-point in the Acid Buffering Characteristic Curve (ABCC) test through calculation of the amount of acid consumed and evaluation of the resultant titration curve.

Net Acid Generation (NAG)

The net acid generation (NAG) test involves the addition of hydrogen peroxide to a sample of mine rock or process residue to oxidise reactive sulfide, then measurement of pH and titration of any net acidity produced by the acid generation and neutralisation reactions occurring in the sample. A significant NAG result (i.e., final NAG_{pH} < 4.5) indicates that the sample is potentially acid forming (PAF) and the test provides a direct measure of the net amount of acid remaining in the sample after all acid generating and acid neutralising reactions have taken place. A NAG_{pH} > 4.5 indicates that the sample is non-acid forming (NAF). The NAG test can provide a direct assessment of the potential for a material to produce acid after a period of exposure and weathering and is used to refine the results of the theoretical NAPP predictions. The NAG test can be used as a standalone test but it is recommended that this only be considered after site specific calibration work is carried out. The standard NAG test is generally unsuitable for coal mining projects as the high organic content of some materials can cause erroneous results (Stewart et al., 2003; ACARP, 2008).

ASSESSMENT OF ELEMENT ENRICHMENT AND SOLUBILITY

In mineralised areas it is common to find a suite of enriched elements that have resulted from natural geological processes. Multi-element scans are carried out to identify any elements that are present in a material (or readily leachable from a material) at concentrations that may be of environmental concern with respect to surface water quality, revegetation and public health. The samples are generally analysed for the following elements:

Major elements AI, Ca, Fe, K, Mg, Na and S.

Minor elements As, B, Cd, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn.

The concentration of these elements in samples can be directly compared with relevant state or national environmental and health-based concentration guideline criteria to determine the level of significance. Water extracts are used to determine the immediate element solubilities under the existing sample pH conditions of the sample. The following tests are normally carried out:

Multi-element composition of solids.

Multi-element composition of solid samples determined using a combination of ICP-mass spectroscopy (ICP-MS), ICP-optical emission spectroscopy (OES), and atomic absorption spectrometry (AAS).

Multi-element composition of water extracts (1:5 sample:deionised water).

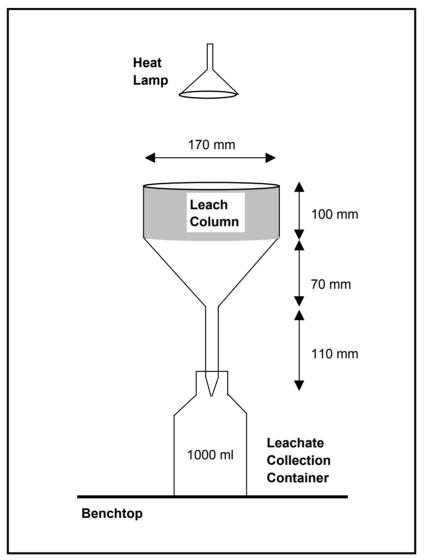
Multi-element composition of water extracts from solid samples determined using a combination of ICP-mass spectroscopy (ICP-MS), ICP-optical emission spectroscopy (OES), and atomic absorption spectrometry (AAS).

Under some conditions (e.g. low pH) the solubility and mobility of common environmentally important elements can increase significantly. If element mobility under initial pH conditions is deemed likely and/or subsequent low pH conditions may occur, kinetic leach column test work may be completed on representative samples.

KINETIC LEACH COLUMN TESTS

Kinetic leach column (KLC) tests can be used to provide information on the reaction kinetics of mining waste materials. The major objectives of kinetics tests are to:

- Provide time-dependent data on the kinetics and rate of acid generation and acid neutralising reactions under laboratory controlled (or onsite conditions);
- Investigate metal release and drainage/seepage quality; and
- Assess treatment options such as addition of alkaline materials.


The KLC tests simulate the weathering process that leads to acid and base generation and reaction under laboratory controlled or site conditions. The kinetic tests allow an assessment of the acid forming characteristics and indicate the rate of acid generation, over what period it will occur, and what management controls may be required.

In KLC tests, water is added to a sample and the mixture allowed to leach products and by-products of acid producing and consuming reactions. Samples of leachate are then collected and analysed. Intermittent water application is applied to simulate rainfall and heat lamps are used to simulate sunshine. These tests provide real-time information and may have to continue for months or years. Monitoring includes trends in pH, sulfate, acidity or alkalinity, and metals, for example. The pH of the collected leachate simulates the acid drainage process, acidity or alkalinity levels indicate the rate of acid production and acid neutralisation, and sulfate production can be related to the rate of sulfide oxidation. Metal concentration data provides an assessment of metal solubility and leaching behaviour.

Figure A1 shows the kinetic leach column set up typically used by RGS adapted from *AMIRA, 2002*. The columns are placed under heat lamps to allow the sample to dry between water additions to ensure adequate oxygen ingress into the sample material.

Approximately 2 kg of sample is accurately weighed and used in the leach columns and depending on the physical nature of the material and particle size can be used on an as-received basis (i.e., no crushing as with process residues) or crushed to nominal 5-10 mm particle size (as with waste rock). The sample in the column is initially leached with deionised water at a rate of about 400 ml/kg of sample and the initial leachate from the columns collected and analysed. Subsequent column leaching is carried out at a rate of about 400 ml/kg per month and again collected and analysed. The leaching rate can be varied to better simulate expected site conditions or satisfy test program data requirements. The column must be exposed to drying conditions in between watering events. The residual water content and air void content in the column can be determined by comparing the wet and dry column weights. A heat lamp is generally used above the sample during daylight hours to maintain the leach column surface temperature at about 30°C.

Figure A1: Kinetic leach column setup

Attachment B Static Geochemical Test Results

Table B1: List of waste rock and coal reject samples

RGS Sample No.	ALS ID	Deposit	Vitronite Sample ID	Drillhole ID	Sample Lithology	Sample Type	From	То	Interval
					Vulcan Prospect			(m)	
		_		_	Overburden		_	_	
Composite 18	EB1914213018	Vulcan	134781	VSW082 C	Soil 100%	Overburden	0.0	1.0	1.0
Composite 26	EB1914213026	Vulcan	134789	VSW083_C	Soil 100%	Overburden	0.0	1.0	1.0
Composite 34	EB1914213034	Vulcan	163117	VSW084_C	Soil 100%	Overburden	0.0	3.0	3.0
Composite 36	EB1914213036	Vulcan	163119	VSW084_C	Sand 100%	Overburden	7.0	11.0	4.0
Composite 53	EB1914213053	Vulcan	163001	VSW087_C	Soil 100%	Overburden	0.0	1.0 3.0	1.0
Composite 54 Composite 63	EB1914213054 EB1914213063	Vulcan Vulcan	163002 163014	VSW087_C VSW088 C	Soil 100% Soil 100%	Overburden Overburden	0.0	3.0	2.0 3.0
Composite 70	EB1914213070	Vulcan	134807	VSW089 C	Soil 100%	Overburden	0.0	1.0	1.0
Composite 84	EB1914214014	Vulcan	134832	VSW092_C	Soil 100%	Overburden	0.0	1.0	1.0
Composite 91	EB1914214021	Vulcan	163038	VSW095_C	Soil 100%	Overburden	0.0	3.0	3.0
Composite 101	EB1914214031	Vulcan	163251	VSW099_C	Soil 100%	Overburden	0.0	1.0	1.0
Composite 109 Composite 55	EB1914214039 EB1914213055	Vulcan Vulcan	163233 163003	VSW104_C VSW087 C	Soil 100% Alluvium 100%	Overburden Overburden	0.0	1.0 4.0	1.0 1.0
Composite 93	EB1914213033	Vulcan	163041	VSW095 C	Alluvium 100%	Overburden	8.0	9.0	1.0
Composite 8	EB1914213008	Vulcan	145303	VSW070 C	Calcrete 100%	Overburden	6.0	7.0	1.0
Composite 37	EB1914213037	Vulcan	163120	VSW084_C	Gravel 100%	Overburden	11.0	14.0	3.0
Composite 39	EB1914213039	Vulcan	163122	VSW084_C	Gravel 100%	Overburden	16.0	18.0	2.0
Composite 4	EB1914213004	Vulcan	145166	VSW052_C	Conglomerate 100%	Overburden	30.0	32.4	2.4
Composite 5	EB1914213005 EB1914213009	Vulcan	145167 145304	VSW052_C VSW070 C	Conglomerate 100% Sandstone 100%	Overburden	32.4	37.4	5.0 9.0
Composite 9 Composite 10	EB1914213009	Vulcan Vulcan	145305 - 145306	VSW070_C VSW070_C	Sandstone 100%	Overburden Overburden	16.0	16.0 23.0	9.0 7.0
Composite 10	EB1914213011	Vulcan	145307	VSW070_C	Sandstone 100%	Overburden	23.0	25.0	2.0
Composite 21	EB1914213021	Vulcan	134784	VSW082_C	Sandstone 100%	Overburden	5.0	16.0	11.0
Composite 28	EB1914213028	Vulcan	134791	VSW083_C	Sandstone 100%	Overburden	4.0	20.0	16.0
Composite 41	EB1914213041	Vulcan	163124 - 163125	VSW084_C	Sandstone 100%	Overburden	19.0	26.0	7.0
Composite 43	EB1914213043	Vulcan	163127 - 163128 163004	VSW084_C	Sandstone 100%	Overburden	27.0	37.0	10.0 5.0
Composite 56 Composite 57	EB1914213056 EB1914213057	Vulcan Vulcan	163005 - 163006	VSW087_C VSW087 C	Sandstone 100% Sandstone 100%	Overburden Overburden	4.0 9.0	9.0 13.0	4.0
Composite 58	EB1914213058	Vulcan	163007 - 163009	VSW087 C	Sandstone 100%	Overburden	13.0	18.0	5.0
Composite 59	EB1914213059	Vulcan	163010	VSW087_C	Sandstone 100%	Overburden	18.0	21.0	3.0
Composite 66	EB1914213066	Vulcan	163018 - 163019	VSW088_C	Sandstone 100%	Overburden	12.0	18.0	6.0
Composite 67	EB1914213067	Vulcan	163020 - 163022	VSW088_C	Sandstone 100%	Overburden	18.0	23.0	5.0
Composite 68 Composite 94	EB1914213068 EB1914214024	Vulcan Vulcan	163023 163042 - 163043	VSW088_C VSW095 C	Sandstone 100% Sandstone 100%	Overburden Overburden	23.0 9.0	29.0 12.0	6.0 3.0
Composite 94	EB1914214024	Vulcan	163042 - 163043	VSW095_C	Sandstone 100%	Overburden	12.0	14.0	2.0
Composite 97	EB1914214027	Vulcan	163046 - 163047	VSW095 C	Sandstone 100%	Overburden	15.0	18.0	3.0
Composite 98	EB1914214028	Vulcan	163048 - 163050	VSW095_C	Sandstone 100%	Overburden	18.0	24.0	6.0
Composite 99	EB1914214029	Vulcan	163201	VSW095_C	Sandstone 100%	Overburden	24.0	25.0	1.0
Composite 103	EB1914214033	Vulcan	163253 - 163254	VSW099_C	Sandstone 100%	Overburden	3.0	7.0	4.0
Composite 104 Composite 105	EB1914214034 EB1914214035	Vulcan Vulcan	163255 - 163256 163257 - 163258	VSW099_C VSW099_C	Sandstone 100% Sandstone 100%	Overburden Overburden	7.0	14.0 19.0	7.0 5.0
Composite 111	EB1914214041	Vulcan	163236	VSW104 C	Sandstone 100%	Overburden	4.0	7.0	3.0
Composite 112	EB1914214042	Vulcan	163237	VSW104_C	Sandstone 100%	Overburden	7.0	14.0	7.0
Composite 113	EB1914214043	Vulcan	163238 - 163240	VSW104_C	Sandstone 100%	Overburden	14.0	20.0	6.0
Composite 1	EB1914213001	Vulcan	145163	VSW052_C	Clay 100%	Overburden	0.1	5.0	4.9
Composite 2	EB1914213002	Vulcan	145164	VSW052_C	Clay 100%	Overburden	5.0	10.0	5.0
Composite 3 Composite 6	EB1914213003 EB1914213006	Vulcan Vulcan	145165 145301	VSW052_C VSW070 C	Clay 100% Clay 100%	Overburden Overburden	25.0 0.0	30.0 3.0	5.0 3.0
Composite 7	EB1914213007	Vulcan	145302	VSW070 C	Clay 100%	Overburden	3.0	6.0	3.0
Composite 19	EB1914213019	Vulcan	134782	VSW082_C	Clay 100%	Overburden	1.0	2.0	1.0
Composite 20	EB1914213020	Vulcan	134783	VSW082_C	Clay 100%	Overburden	2.0	5.0	3.0
Composite 27	EB1914213027	Vulcan	134790	VSW083_C	Clay 100%	Overburden	1.0	4.0	3.0
Composite 35	EB1914213035 EB1914213038	Vulcan	163118	VSW084_C VSW084_C	Clay 100%	Overburden	3.0	7.0	4.0
Composite 38 Composite 40	EB1914213038 EB1914213040	Vulcan Vulcan	163121 163123	VSW084_C VSW084_C	Clay 100% Clay 100%	Overburden Overburden	14.0 18.0	16.0 19.0	2.0 1.0
Composite 40	EB1914213040	Vulcan	134797	VSW084_C VSW085 C	Clay 100%	Overburden	0.0	2.0	2.0
Composite 47	EB1914213047	Vulcan	134798 - 134799	VSW085_C	Clay 100%	Overburden	2.0	8.0	6.0
Composite 48	EB1914213048	Vulcan	1347800	VSW085_C	Clay 100%	Overburden	8.0	14.0	6.0
Composite 49	EB1914213049	Vulcan	1347801 - 1347802	VSW085_C	Clay 100%	Overburden	14.0	18.0	4.0
Composite 50	EB1914213050	Vulcan	<u>1347803 - 1347804</u> 1347805	VSW085_C	Clay 100%	Overburden	18.0	25.0	7.0
Composite 51 Composite 52	EB1914213051 EB1914213052	Vulcan Vulcan	1347805 1347806	VSW085_C VSW085_C	Clay 100% Clay 100%	Overburden Overburden	25.0 29.0	29.0 30.7	4.0 1.7
Composite 64	EB1914213052	Vulcan	163015 - 163016	VSW085_C VSW088_C	Clay 100%	Overburden	3.0	7.0	4.0
Composite 65	EB1914213065	Vulcan	163017	VSW088_C	Clay 100%	Overburden	7.0	12.0	5.0
Composite 71	EB1914214001	Vulcan	134808 - 134809	VSW089_C	Clay 100%	Overburden	1.0	3.0	2.0
Composite 72	EB1914214002	Vulcan	134810	VSW089_C	Clay 100%	Overburden	3.0	14.0	11.0
Composite 73	EB1914214003	Vulcan	134811	VSW089_C	Clay 100%	Overburden	14.0	16.0	2.0
Composite 74	EB1914214004	Vulcan	134812	VSW089_C VSW089_C	Clay 100%	Overburden	16.0	28.0	12.0
Composite 75 Composite 76	EB1914214005 EB1914214006	Vulcan Vulcan	<u>134813</u> 134814	VSW089_C VSW090 C	<u>Clay 100%</u> Soil 100%	Overburden Overburden	28.0 0.0	30.2 1.0	2.2
Composite 70	EB1914214000	Vulcan	134815	VSW090_C	Clay 100%	Overburden	1.0	5.0	4.0
Composite 78	EB1914214008	Vulcan	134816 - 134818	VSW090_C	Clay 100%	Overburden	5.0	10.0	5.0
Composite 79	EB1914214009	Vulcan	134819	VSW090_C	Clay 78%, Claystone 22%	Overburden	10.0	19.0	9.0
Composite 85	EB1914214015	Vulcan	134833	VSW092_C	Clay 100%	Overburden	1.0	6.0	5.0
Composite 86	EB1914214016	Vulcan	134834 - 134835	VSW092_C	Clay 100%	Overburden	6.0	12.0	6.0
Composite 92	EB1914214022	Vulcan	163039 - 163040	VSW095_C	Clay 100%	Overburden	3.0	8.0	5.0
Composite 102 Composite 110	EB1914214032 EB1914214040	Vulcan Vulcan	163252 163234 - 163235	VSW099_C VSW104_C	Clay 100% Clay 100%	Overburden Overburden	1.0	3.0 4.0	2.0 3.0
Composite 110	EB1914214040 EB1914213012	Vulcan	145308	VSW104_C VSW070 C	Claystone 100%	Overburden	25.0	4.0 26.0	3.0
Composite 42	EB1914213042	Vulcan	163126	VSW084_C	Claystone 100%	Overburden	26.0	27.0	1.0
Composite 80	EB1914214010	Vulcan	134820	VSW090_C	Claystone 100%	Overburden	19.0	20.0	1.0
Composite 96	EB1914214026	Vulcan	163045	VSW095_C	Claystone 100%	Overburden	14.0	15.0	1.0
Composite 100	EB1914214030	Vulcan	163202	VSW095 C	Claystone 100%	Overburden	25.0	25.8	0.8

Table B1: List of waste rock and coal reject samples

RGS Sample No.	ALS ID	Deposit	Vitronite Sample ID	Drillhole ID	Sample Lithology	Sample Type	From	To	Interval
								(m)	
Composite 16	EB1914213016	Vulcan	145312	VSW070 C	Interburden Sandstone 100%	Interburden	32.0	37.0	5.0
Composite 10	EB1914213017	Vulcan	145312	VSW070_C	Sandstone 100%	Interburden	37.0	41.0	4.0
Composite 17	EB1914213025	Vulcan	134788	VSW082 C	Sandstone 100%	Interburden	20.0	26.1	6.1
Composite 33	EB1914213033	Vulcan	134796	VSW083 C	Sandstone 100%	Interburden	25.0	30.9	5.9
Composite 115	EB1914214045	Vulcan	163242	VSW104 C	Sandstone 100%	Interburden	21.0	28.0	7.0
Composite 116	EB1914214046	Vulcan	163243	VSW104 C	Sandstone 100%	Interburden	28.0	30.0	2.0
Composite 24	EB1914213024	Vulcan	134787	VSW082 C	Siltstone 100%	Interburden	18.7	20.0	1.3
Composite 32	EB1914213032	Vulcan	134795	VSW083 C	Siltstone 100%	Interburden	24.0	25.0	1.0
Composite 82	EB1914214012	Vulcan	134822	VSW090_C	Claystone 100%	Interburden	26.0	27.0	1.0
Composite 83	EB1914214013	Vulcan	134823	VSW090_C	Claystone 100%	Interburden	27.0	30.9	3.9
Composite 90	EB1914214020	Vulcan	134839	VSW092_C	Claystone 100%	Interburden	21.0	23.2	2.2
Composite 108	EB1914214038	Vulcan	163262	VSW099_C	Carb Sandstone 100%	Interburden	24.0	29.6	5.6
					oof, floor and partings				
Composite 15	EB1914213015	Vulcan	145311	VSW070_C	Sandstone 100%	Floor (Alex)	28.0	32.0	4.0
Composite 31	EB1914213031	Vulcan	134794	VSW083_C	Sandstone 100%	Floor (Alex)	22.0	24.0	2.0
Composite 23	EB1914213023	Vulcan	134786	VSW082_C	Weathered Coal 25%, Siltstone 75%	Floor (Alex)	17.7	18.7	1.0
Composite 62	EB1914213062	Vulcan	163013	VSW087_C	Carb Siltstone 100%	Floor (Alex)	24.9	29.0	4.1
Composite 29	EB1914213029	Vulcan	134792	VSW083_C	Sandstone 100%	Roof (Alex)	20.0	21.8	1.8
Composite 44	EB1914213044	Vulcan	163129 - 163131	VSW084_C	Sandstone 100%	Roof (Alex)	37.0	42.8	5.8
Composite 60	EB1914213060	Vulcan	163011	VSW087_C	Sandstone 100%	Roof (Alex)	21.0	24.0	3.0
Composite 106	EB1914214036	Vulcan	163259 - 163260	VSW099_C	Sandstone 100%	Roof (Alex)	19.0	22.8	3.8
Composite 69	EB1914213069	Vulcan	163024	VSW088_C	Siltstone 100%	Roof (Alex)	29.0	30.0	1.0
Composite 22	EB1914213022	Vulcan	134785	VSW082_C	Claystone 100%	Roof (Alex)	16.0	17.7	1.7
Composite 13 Composite 87	EB1914213013 EB1914214017	Vulcan Vulcan	145309 134836	VSW070_C VSW092 C	Carb Sandstone 100% Clay 100%	Roof (Alex) Roof (Dysart LL)	26.0 12.0	27.5 13.0	1.5 1.0
Composite 81									
Composite 81 Composite 14	EB1914214011 EB1914213014	Vulcan Vulcan	134821 145310	VSW090_C VSW070_C	Claystone 98%, Carb Claystone 2% Weathered Coal 100%	Roof/Seam/Floor (Alex)	20.0 27.5	26.0 28.0	6.0 0.5
Composite 14 Composite 30	EB1914213014 EB1914213030	Vulcan	134793	VSW070_C VSW083 C	Weathered Coal 100%	Seam (Alex) Seam (Alex)	21.5	20.0	0.5
Composite 30	EB1914213030	Vulcan	163241	VSW104 C	Sandstone 80%, Carb Siltstone 20%	Seam (Alex)	20.0	22.0	1.0
Composite 114 Composite 45	EB1914214044	Vulcan	163132	VSW084 C	Carb Claystone/Sandstone (38%/62%)	Seam (Alex) / Floor (Alex)	42.8	43.7	0.9
Composite 88	EB1914213043	Vulcan	134837	VSW092 C	Clay 99%, Weathered Coal 1%	Seam (Dysant LL)	13.0	17.7	4.7
Composite 107	EB1914214013	Vulcan	163261	VSW092_C	Claystone 89%, Carb Claystone 11%	Seam/Floor (Alex)	22.8	24.0	1.2
				_	Claystone 35%, Weathered Coal 51%,				
Composite 89	EB1914214019	Vulcan	134838	VSW092 C		Seam/Floor (Dysart LL)	17.7	21.0	3.3
					Carb Clavstone 14%				
					Carb Claystone 14%			2110	
					Jupiter Prospect			2	
Composite 447	ED4044044047		225400		Jupiter Prospect Overburden				
Composite 117	EB1914214047	Jupiter	335480	 VSW017_C	Jupiter Prospect Overburden Sand 100%	Overburden	0.1	1.0	0.9
Composite 121	EB1914214051	Jupiter Jupiter	335477	VSW017_C VSW019_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3%	Overburden Overburden	0.1	1.0 3.0	0.9
Composite 121 Composite 129	EB1914214051 EB1914214059	Jupiter Jupiter Jupiter	335477 134772	VSW017_C VSW019_C VSW077_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50%	Overburden Overburden Overburden	0.1 0.0 0.0	1.0 3.0 1.0	0.9 3.0 1.0
Composite 121 Composite 129 Composite 134	EB1914214051 EB1914214059 EB1914214064	Jupiter Jupiter Jupiter Jupiter	335477 134772 134770	VSW017_C VSW019_C VSW077_C VSW080_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100%	Overburden Overburden Overburden Overburden	0.1 0.0 0.0 0.0	1.0 3.0 1.0 1.0	0.9 3.0 1.0 1.0
Composite 121 Composite 129 Composite 134 Composite 118	EB1914214051 EB1914214059 EB1914214064 EB1914214048	Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 0.0 1.0	1.0 3.0 1.0 1.0 3.0	0.9 3.0 1.0 1.0 2.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0	1.0 3.0 1.0 1.0 3.0 6.0	0.9 3.0 1.0 1.0 2.0 3.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120	EB1914214051 EB1914214059 EB1914214064 EB1914214064 EB1914214048 EB1914214049 EB1914214050	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0	1.0 3.0 1.0 3.0 6.0 7.6	0.9 3.0 1.0 2.0 3.0 1.6
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 130	EB1914214051 EB1914214059 EB1914214064 EB1914214064 EB1914214048 EB1914214049 EB1914214050 EB1914214060	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0	1.0 3.0 1.0 1.0 3.0 6.0 7.6 3.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 130 Composite 135	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049 EB1914214049 EB1914214060 EB1914214065	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW077_C VSW080_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 130 Composite 135 Composite 125	EB1914214051 EB1914214059 EB1914214064 EB1914214064 EB1914214049 EB1914214050 EB1914214060 EB1914214065 EB1914214055	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW077_C VSW077_C VSW080_C VSW080_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 125 Composite 127	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214048 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214067	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134773 134770 145152 134872	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW02_C VSW022_C VSW103_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Shale 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 2.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 130 Composite 135 Composite 125	EB1914214051 EB1914214059 EB1914214064 EB1914214064 EB1914214049 EB1914214050 EB1914214060 EB1914214065 EB1914214055	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW077_C VSW077_C VSW080_C VSW080_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 125 Composite 137 Composite 138	EB1914214051 EB1914214059 EB1914214064 EB1914214064 EB1914214048 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214068	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW077_C VSW022_C VSW003_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Shale 100% Siltstone 100% Siltstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 2.0 5.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 135 Composite 137 Composite 138 Composite 139 Composite 124	EB1914214051 EB1914214059 EB1914214059 EB1914214068 EB1914214048 EB1914214049 EB1914214050 EB1914214060 EB1914214065 EB1914214068 EB1914214068 EB1914214069	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW017_C VSW077_C VSW080_C VSW022_C VSW103_C VSW103_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Shale 100% Siltstone 100% Siltstone 100% Siltstone 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 2.0 5.0 8.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 135 Composite 137 Composite 138 Composite 139 Composite 124 Composite 124	EB1914214051 EB1914214059 EB1914214059 EB1914214059 EB1914214048 EB1914214048 EB1914214050 EB1914214065 EB1914214065 EB1914214068 EB1914214069 EB1914214064	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335483 134773 134773 134770 145152 134872 134873 134874 145151	VSW017_C VSW019_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Shale 100% Siltstone 100% Siltstone 100% Clay 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 1.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 1.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 135 Composite 137 Composite 138 Composite 139 Composite 124 Composite 124	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214048 EB1914214049 EB1914214060 EB1914214065 EB1914214065 EB1914214067 EB1914214068 EB1914214064 EB1914214066	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100%	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 1.0 5.0 8.0 0.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 1.0 2.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 2.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 130 Composite 135 Composite 135 Composite 137 Composite 138 Composite 139 Composite 139 Composite 139 Composite 136 Composite 122 Composite 131	EB1914214051 EB1914214059 EB1914214054 EB1914214048 EB1914214049 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214065 EB1914214068 EB1914214069 EB1914214064 EB1914214061	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134872 134873 134874 145151 134871 335478 134774	VSW017_C VSW019 C VSW077 C VSW077 C VSW017 C VSW017 C VSW017 C VSW017 C VSW022 C VSW103 C VSW103 C VSW103 C VSW103 C VSW103 C VSW103 C VSW103 C VSW019 C VSW077 C Interbur	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltistone 100% Siltistone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% den, roof, floor and partings	Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 1.0 5.0 8.0 0.0 0.0 0.0 3.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 1.0 2.0 7.5	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 4.5
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 130 Composite 135 Composite 137 Composite 138 Composite 138 Composite 139 Composite 124 Composite 122 Composite 122 Composite 121 Composite 123	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214049 EB1914214065 EB1914214065 EB1914214065 EB1914214068 EB1914214064 EB1914214054 EB1914214054 EB1914214051 EB1914214051	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134872 134873 134874 145151 134871 335478 134774	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW022_C VSW103_C VSW103_C VSW103_C VSW010_C VSW019_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Catbonaceous Siltstone 100% Carbonaceous Siltstone 100% Sandstone 100% Sandstone 100%	Overburden Overburden	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 1.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 1.0 2.0 7.5 4.0 24.9	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 125 Composite 138 Composite 138 Composite 139 Composite 134 Composite 134 Composite 131 Composite 133	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214048 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214066 EB1914214066 EB1914214066 EB1914214061 EB1914214061 EB1914214063 EB1914214063	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW022_C VSW103_C VSW103_C VSW103_C VSW013_C VSW013_C VSW019_C VSW077_C Interbur VSW019_C VSW078_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% den, roof, floor and partings Sandstone 100% Siltstone 100%	Overburden Floor (Alex)	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 3.0 3.0 3.0 3.0 3.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 3.0 2.9 7.5 4.0 24.9 6.0	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 1.0 2.0 4.5 1.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 120 Composite 120 Composite 135 Composite 125 Composite 137 Composite 138 Composite 139 Composite 124 Composite 136 Composite 131 Composite 133 Composite 133 Composite 133 Composite 133 Composite 133 Composite 133 Composite 133	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214068 EB1914214068 EB1914214064 EB1914214065 EB1914214061 EB1914214063 EB1914214063 EB1914214063 EB1914214065	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134872 134873 134874 145151 134871 335478 134774 335479 134767 145154	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW077_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltistone 100% Clay 100% Clay 100% Clay 50%, Claystone 50% Carbonaceous Siltistone 100% den, roof, floor and partings Sandstone 100% Siltistone 100% Siltistone 100% Sandstone 100% Carbonaceous Siltistone 100% Sandstone 100% Siltistone 100% Sandstone 100% Sandstone 100% Sandstone 100%	Overburden Floor (Alex) Floor (Dysart LL) / Roof (May)	0.1 0.0 0.0 1.0 3.0 6.0 1.0 1.0 1.0 5.0 8.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0	1.0 3.0 1.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 5.0 11.0 1.0 1.0 2.0 7.5 4.0 24.9 6.0 33.0	0.9 3.0 1.0 2.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 4.5 1.0 10.6 1.6 13.0
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 135 Composite 135 Composite 138 Composite 139 Composite 124 Composite 124 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 128	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214068 EB1914214069 EB1914214064 EB1914214061 EB1914214063 EB1914214053 EB1914214053	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145154 145155	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 500%, Sandstone 50% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltstone 100% Sandstone 100% Siltstone 100%, Carb Claystone <1%	Overburden Overburden	0.1 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 0.0 0.	1.0 3.0 1.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 1.0 2.0 7.5 4.0 24.9 6.0 33.0 33.0 43.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 4.5 1.0 10.6 1.6 13.0 10.2
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 130 Composite 130 Composite 135 Composite 137 Composite 138 Composite 138 Composite 138 Composite 124 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214049 EB1914214055 EB1914214065 EB1914214065 EB1914214065 EB1914214066 EB1914214061 EB1914214061 EB1914214053 EB1914214053 EB1914214053 EB1914214055 EB1914214055 EB1914214053 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134773 134770 145152 134872 134874 134874 134874 134874 134874 134874 335478 134774 335479 134767 145155 134764	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW012_C VSW012_C VSW019_C VSW019_C VSW019_C VSW022_C VSW022_C VSW022_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Caly Shale 100% Calay 50%, Claystone 50% Calay Shale 100% Siltstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Floor (Alex) Floor (May) Roof (Alex)	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 135 Composite 135 Composite 138 Composite 139 Composite 124 Composite 124 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 128	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214068 EB1914214069 EB1914214064 EB1914214061 EB1914214063 EB1914214053 EB1914214053	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145154 145155	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Overburden	0.1 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0 8.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 3.0 0 0.0 0.	1.0 3.0 1.0 1.0 3.0 6.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 1.0 2.0 7.5 4.0 24.9 6.0 33.0 33.0 43.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 4.5 1.0 10.6 1.6 13.0 10.2
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 125 Composite 125 Composite 125 Composite 138 Composite 139 Composite 139 Composite 122 Composite 131 Composite 133 Composite 123 Composite 123 Composite 123 Composite 123 Composite 122 Composite 123 Composite 122 Composite 122	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049 EB1914214049 EB1914214050 EB1914214050 EB1914214065 EB1914214065 EB1914214066 EB1914214066 EB1914214053 EB1914214061 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214054 EB1914214055 EB1914214055 EB1914214055 EB1914214055	Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145155 134764 145153	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW077_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW013_C VSW013_C VSW019_C VSW019_C VSW019_C VSW078_C VSW022_C VSW022_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Carbonaceous Siltstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Sandstone 100% Siltstone 100% Sandstone	Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Overburden Floor (Alex) Floor (May) Roof (Alex) Roof (Dysart LL Ply4)	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 119 Composite 120 Composite 120 Composite 135 Composite 125 Composite 125 Composite 137 Composite 138 Composite 124 Composite 139 Composite 122 Composite 133 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 122 Composite 122 Composite 123 Composite 124 Composite 125 Composite 126 Composite 126 Composite 126 Composite 127 Composite 128 Composite 128 Co	EB1914214051 EB1914214059 EB1914214064 EB1914214048 EB1914214049 EB1914214049 EB1914214050 EB1914214065 EB1914214065 EB1914214065 EB1914214068 EB1914214064 EB1914214052 EB1914214061 EB1914214063 EB1914214063 EB1914214063 EB1914214063 EB1914214057 EB1914214058 EB1914214058 EB1914214058 EB1914214058 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059 EB1914214059	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145155 134767 145155 134764 145153 1919006604R005	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Shale 100% Siltstone 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Carbonaceous Siltstone 100% Siltstone 100%, Carb Claystone <1%	Overburden Floor (Alex) Floor (Dysart LL) / Roof (May) Floor (May) Roof (Dysart LL Ply4)	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 130 Composite 135 Composite 135 Composite 137 Composite 138 Composite 138 Composite 139 Composite 124 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 122 Composite 123 Composite 122 Composite 126 1	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214049 EB1914214049 EB1914214065 EB1914214065 EB1914214065 EB1914214066 EB1914214064 EB1914214064 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214055 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB192251001 EB1929251003	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134874 134874 134874 134874 134874 134874 134774 335478 134774 335479 134767 145155 134764 145155 134764 145153 IP19006604R005 IP1900410R298	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW012_C VSW022_C VSW019_C VSW019_C VSW019_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sand stone 50% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Caly Shale 100% Carbonaceous Siltstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Floor (Alex) Floor (May) Roof (Alex) Roof (Dysart LL Ply4)	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 135 Composite 135 Composite 138 Composite 138 Composite 138 Composite 124 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 122 Composite 123 Composite 127 Composite 128 Composite 127 Composite 128 Composite 127 Composite 128 Composite 127 Composite 127 Composite 128 Composite 127 Composite 128 Composite 126 Composite 126 Composite 126 Composite 127 Composite 127 Composite 128 Composite 128 Composite 126 Composite 126 Composite 127 Composite 128 Composite 128 Composite 128 Composite 126 Composite 126 Composite 127 Composite 128 Composite 128 Co	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214049 EB1914214060 EB1914214065 EB1914214065 EB1914214065 EB1914214066 EB1914214061 EB1914214061 EB1914214061 EB1914214063 EB1914214063 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214055 EB1914214055 EB1914214056 EB1914214056 EB1929251001 EB1929251001 EB1929251003 EB1932449003	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134773 134770 145152 134872 134873 134874 145151 134874 145151 134874 134774 335478 134774 335479 134767 145155 134764 145153 IP19006604R005 IP190021032R587	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW077_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 10% Clay 50%, Claystone 50% Caly Shale 100% Catbonaceous Siltstone 100% Carbonaceous Siltstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Floor (Dysart LL) / Roof (May) Roof (Dysart LL Ply4)	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 119 Composite 120 Composite 120 Composite 135 Composite 135 Composite 137 Composite 138 Composite 139 Composite 139 Composite 139 Composite 122 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 126 Composite 127 Composite 128 Composite 126 Composite 127 Composite 128 Composite 126 Composite 126 Co	EB1914214051 EB1914214059 EB1914214054 EB1914214048 EB1914214048 EB1914214049 EB1914214050 EB1914214050 EB1914214065 EB1914214065 EB1914214068 EB1914214068 EB1914214068 EB1914214064 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214054 EB1914214055 EB1914214055 EB1914214055 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB192251003 EB1922449003 EB1932449005	Jupiter Jupiter	335477 134770 134770 335481 335482 335483 134773 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145155 134767 145155 134764 145153 1919006604R005 IP19002032R587 IP19002032R587	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW022_C VSW022_C VSW022_C VSW022_C VSW069_C VSW069_C VSW069_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 97%, Soil 3% Sand 97%, Soil 3% Sand 90%, Sandstone 50% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100% Catponaceous Siltstone 100% Siltstone 100% Sandstone 100% Siltstone 100% Sandstone 100% Carb Siltstone 100%<	Overburden Floor (Alex) Roof (Dysart LL Ply4) Coarse Reject Coarse Reject	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 135 Composite 125 Composite 137 Composite 138 Composite 138 Composite 139 Composite 122 Composite 130 Composite 133 Composite 133 Composite 133 Composite 123 Composite 122 Composite 123 Composite 123 Composite 123 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 125 Composite 126 Composite 126 Composite 127 Composite 127 Composite 127 Composite 126 Composite 127 Composite 127 Composite 126 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 127 Composite 126 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 127 Composite 126 Composite 127 Composite 128 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Composite 127 Composite 126 Composite 127 Composite 126 Composite 126 Composite 126 Composite 126 Composite 127 Composite 126 Composite 126 Co	EB1914214051 EB1914214059 EB1914214064 EB1914214049 EB1914214049 EB1914214049 EB1914214050 EB1914214050 EB1914214065 EB1914214065 EB1914214066 EB1914214068 EB1914214066 EB1914214066 EB1914214061 EB1914214061 EB1914214063 EB1914214063 EB1914214065 EB1914214058 EB1914214058 EB1914214058 EB1914214058 EB1914214058 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB1914214055 EB192251001 EB192251001 EB1922449005 EB1932449005	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145155 134767 145155 134764 145155 134764 145155 134764 145153 1919006604R005 IP1900410R298 IP19002592R466 IP19004096R302	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW078_C VSW078_C VSW078_C VSW078_C VSW078_C VSW078_C VSW078_C VSW078_C VSW069_C VSW069_C VSW069_C VSW079_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Carbonaceous Siltstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Floor (Alex) Floor (May) Floor (May) Floor (May) Roof (Dysart LL) / Roof (May) Floor (May) Roof (Dysart LL Ply4) Coarse Reject Coarse Reject Coarse Reject	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 119 Composite 130 Composite 135 Composite 137 Composite 138 Composite 137 Composite 138 Composite 137 Composite 138 Composite 138 Composite 138 Composite 122 Composite 123 Composite 128 Composite 128 Composite 128 Composite 128 Composite 128 1 2 5 6 7 3	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214049 EB1914214049 EB1914214065 EB1914214065 EB1914214065 EB1914214065 EB1914214064 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214055 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB192251001 EB192251003 EB1932449003 EB1932449005	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134874 145151 134874 134874 134874 134874 134774 335478 134774 335479 134767 145155 134767 145155 134764 145155 134764 145155 134764 145155 134764 145155 1919004098R302 IP19004098R302 IP19004098R302 IP19004098R302 IP19004098R302 IP19004098R302	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW002_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW077_C Interbur VSW019_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Sandstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Floor (Alex) Floor (May) Roof (Alex) Roof (Dysart LL Ply4) Coarse Reject Coarse Reject Coarse Reject Coarse Reject Coarse Reject	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 130 Composite 135 Composite 135 Composite 137 Composite 138 Composite 138 Composite 139 Composite 124 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 126 1 2 Composite 126 1 2 Composite 128 Composite 128 Composite 129 Composite 129 Composite 120 Composite 120 Composit	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214049 EB1914214065 EB1914214065 EB1914214065 EB1914214065 EB1914214067 EB1914214066 EB1914214061 EB1914214061 EB1914214061 EB1914214063 EB1914214063 EB1914214055 EB1914214056 EB1914214056 EB1914214056 EB1920251001 EB1920251003 EB1932449003 EB1932449005 EB1932449005 EB1932449005 EB1932449005	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874 134874 134874 134874 134774 335478 134774 335479 134767 145155 134764 145155 134764 145153 IP19006604R005 IP1900410R299 IP1900410R299 IP1900410R299 IP1900410R299 IP1900410R299 IP1900410R299 IP1900400R302 IP1900410R299 IP1900400R302	VSW017_C VSW019_C VSW077_C VSW017_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW022_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Caly Shale 100% Catbonaceous Siltstone 100% Carbonaceous Siltstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Coarse Reject Coarse Reject Fine Reject	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 120 Composite 135 Composite 135 Composite 138 Composite 138 Composite 138 Composite 139 Composite 124 Composite 122 Composite 123 Composite 123 Composite 133 Composite 123 Composite 123 Composite 123 Composite 126 Composite 126 Composite 126 Composite 126 Composite 127 Composite 128 Composite 127 Composite 128 Composite 126 Composite 126 Composite 126 Composite 126 Composite 127 Composite 127 Composite 128 Composite 127 Composite 126 Composite 127 Composite 126 Composite 127 Composite 128 Composite 128 Co	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214050 EB1914214050 EB1914214055 EB1914214055 EB1914214055 EB1914214067 EB1914214066 EB1914214066 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214057 EB1914214053 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB192251003 EB1932449003 EB1932449003 EB1932449005 EB1932449007 EB1929251002 EB1932449007	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 134874 1345151 134874 1345151 134871 335478 134774 335479 134767 145155 134767 145155 134764 145155 134764 145155 134764 145153	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Carbonaceous Siltstone 100% Gen, roof, floor and partings Sandstone 100%, Carb Claystone <1%	Overburden Overburden	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 118 Composite 119 Composite 120 Composite 125 Composite 125 Composite 125 Composite 138 Composite 139 Composite 139 Composite 122 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 123 Composite 122 Composite 123 Composite 122 Composite 123 Composite 123 Composite 126 Composite 127 Composite 128 Composite 127 Composite 128 Composite 126 Composite 127 Composite 127 Composite 128 Composite 127 Composite 128 Composite 127 Composite 128 Composite 127 Composite 128 Composite 128 Composite 139 Composite 130 Composite 130 Co	EB1914214051 EB1914214059 EB1914214054 EB1914214048 EB1914214049 EB1914214049 EB1914214040 EB1914214050 EB1914214065 EB1914214065 EB1914214067 EB1914214068 EB1914214068 EB1914214066 EB1914214066 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214055 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB192251001 EB1922449003 EB1932449001 EB192251002 EB1932449007 EB1932449002	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 145151 134874 145151 134871 335478 134774 335479 134767 145155 134767 145155 134767 145155 134764 145155 134764 145155 191900410R298 IP19004096R302 IP19004601R299 IP19004601R299 IP19004601R299 IP19004601R299 IP19004601R299	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW077_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW078_C VSW	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 50%, Sandstone 50% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Carbonaceous Siltstone 100% Sandstone 100%, Carb Claystone <1%	Overburden Floor (Alex) Floor (May) Floor (May) Floor (May) Floor (May) Roof (Alex) Roof (Dysart LL Ply4) Coarse Reject Coarse Reject Coarse Reject Coarse Reject Fline Reject Fline Reject Fline Reject Fline Reject	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 3.0 1.6 2.0 1.9 9.0 3.0 3.0 3.0 3.0 3.0 3.0 4.5 1.0 2.0 4.5 1.0 2.0 4.5 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Composite 121 Composite 129 Composite 134 Composite 119 Composite 120 Composite 120 Composite 135 Composite 135 Composite 137 Composite 138 Composite 138 Composite 138 Composite 124 Composite 122 Composite 123 Composite 126 Composite 132 Composite 126 Composite 132 Composite 126 Composite 132 Composite 126 Composite 132 Composite 126 Composite 132 Composite 132 Composite 133 Composite 126 Composite 132 Composite 133 Composite 132 Composite 133 Composite 134 Composite 134 Composite 135 Composite 134 Composite 134 Composite 135 Composite 132 Composite 132 Co	EB1914214051 EB1914214059 EB1914214054 EB1914214049 EB1914214049 EB1914214050 EB1914214050 EB1914214055 EB1914214055 EB1914214055 EB1914214067 EB1914214066 EB1914214066 EB1914214053 EB1914214053 EB1914214053 EB1914214053 EB1914214057 EB1914214053 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB1914214056 EB192251003 EB1932449003 EB1932449003 EB1932449005 EB1932449007 EB1929251002 EB1932449007	Jupiter Jupiter	335477 134772 134770 335481 335482 335483 134773 134770 145152 134872 134873 134874 134874 1345151 134874 1345151 134871 335478 134774 335479 134767 145155 134767 145155 134764 145155 134764 145155 134764 145153	VSW017_C VSW019_C VSW077_C VSW080_C VSW017_C VSW017_C VSW017_C VSW017_C VSW022_C VSW103_C VSW103_C VSW103_C VSW103_C VSW103_C VSW019_C VSW019_C VSW019_C VSW019_C VSW019_C VSW022_C	Jupiter Prospect Overburden Sand 100% Sand 97%, Soil 3% Sand 50%, Sandstone 50% Sand 100% Sand 100% Sandstone 100% Siltstone 100% Siltstone 100% Siltstone 100% Clay 100% Clay 50%, Claystone 50% Coaly Shale 100% Carbonaceous Siltstone 100% Carbonaceous Siltstone 100% Gen, roof, floor and partings Sandstone 100%, Carb Claystone <1%	Overburden Overburden	0.1 0.0 0.0 1.0 1.0 1.0 1.0 2.0 5.0 8.0 0.0 0.0 3.0 3.0 3.0 14.3 4.5 20.0 33.0 0.0	1.0 3.0 1.0 3.0 7.6 3.0 2.9 10.0 5.0 8.0 11.0 2.0 7.5 4.0 24.9 6.0 33.0 43.2 3.2	0.9 3.0 1.0 2.0 1.6 2.0 1.6 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 2.0 4.5 1.0 10.6 1.6 13.0 10.2 3.2

Table B2: Acid Base Account test results for waste rock samples

RGS Sample	ALS Sample ID	Donosit	Vitronite Sample	Drill Hole ID	Sample Lithology	Sample Type	From	То	Interval	pH ¹	EC ¹	Total S	Scr	MPA ²	ANC ²	NAPP ²	ANC:MPA	Sample Classification ³
ID	ALS Sample ID	Deposit	ID	Dimnole ID	Sample Linology	Sample Type		(m)		рп	(µS/cm)	(%)		()	kg H₂SO₄/	/t)	Ratio	Sample Classification
1	EB1914213018		134781	VSW082_C	Soil 100%	Soil	0.00		1.00	7.38	368	0.02		0.6	18.3	-17.7	29.9	Non Acid Forming (Barren)
2	EB1914213026	Vulcan	134789	VSW083_C	Soil 100%	Soil	0.00		1.00	8.61	229	0.005		0.2	17.6	-17.4	114.9	Non Acid Forming (Barren)
3	EB1914213034	Vulcan	163117	VSW084_C	Soil 100%	Soil	0.00	3.00	3.00	8.3	839	0.02		0.6	16.9	-16.3	27.6	Non Acid Forming (Barren)
4	EB1914213036	Vulcan	163119	VSW084 C	Sand 100%	Soil	7.00	11.00	4.00	9.19	433	0.005		0.2	27.2	-27.0	177.6	Non Acid Forming (Barren)
5	EB1914213053	Vulcan	163001	VSW087_C	Soil 100%	Soil	0.00	1.00	1.00	8.41	178	0.005		0.2	12.6	-12.4	82.3	Non Acid Forming (Barren)
6	EB1914213054	Vulcan	163002	VSW087_C	Soil 100%	Soil	1.00	3.00	2.00	9.00	672	0.03		0.9	27.9	-27.0	30.4	Non Acid Forming (Barren)
7	EB1914213063	Vulcan	163014	VSW088 C	Soil 100%	Soil	0.00	3.00	3.00	8.54	475	0.005		0.2	15.8	-15.6	103.2	Non Acid Forming (Barren)
8	EB1914213070 FB1914214014	Vulcan	134807 134832	VSW089_C	Soil 100%	Soil Soil	0.00	1.00	1.00	8.13	196	0.005		0.2	32.7	-32.5	213.6 132.6	Non Acid Forming (Barren)
10	EB1914214014 EB1914214021	Vulcan Vulcan	163038	VSW092_C VSW095_C	Soil 100% Soil 100%	Soil	0.00		3.00	9.05 8.60	401 878	0.02		0.6	81.2 23.0	-80.6 -22.4	37.6	Non Acid Forming (Barren)
10	EB1914214031	Vulcan	163251	VSW099_C	Soil 100 %	Soil	0.00	1.00	1.00	7.17	123	0.02		0.6	7.5	-22.4	12.2	Non Acid Forming (Barren)
12	EB1914214031	Vulcan	163233	VSW104 C	Soil 100 %	Soil	0.00		1.00	8.66	205	0.02		1.2	22.8	-21.6	12.2	Non Acid Forming (Barren)
13	EB1914214006	Vulcan	134814	VSW090 C	Soil 100%	Soil	0.00		1.00	8.82	307	0.005		0.2	29.8	-29.8	194.6	Non Acid Forming (Barren)
14	EB1914213055	Vulcan	163003	VSW087 C	Alluvium 100%	Alluvium	3.00		1.00	8.61	525	0.02		0.6	15.6	-15.0	25.5	Non Acid Forming (Barren)
15	EB1914214023	Vulcan	163041	VSW095 C	Alluvium 100%	Alluvium	8.00	9.00	1.00	8.09	658	0.03		0.9	16.5	-15.6	18.0	Non Acid Forming (Barren)
16	EB1914213008	Vulcan	145303	VSW070_C	Calcrete 100%	Calcrete	6.00	7.00	1.00	9.72	430	0.02		0.6		-306.4	501.2	Non Acid Forming (Barren)
17	EB1914213037	Vulcan	163120	VSW084_C	Gravel 100%	Gravel	11.00	14.00	3.00	9.16	329	0.005		0.2	19.2	-19.0	125.4	Non Acid Forming (Barren)
18	EB1914213039	Vulcan	163122	VSW084_C	Gravel 100%	Gravel	16.00	18.00	2.00	8.48	441	0.005		0.2	13.4	-13.2	87.5	Non Acid Forming (Barren)
19	EB1914213004	Vulcan	145166	VSW052_C	Conglomerate 100%	Conglomerate	30.00	32.40	2.40	8.92	126	0.005		0.2	3.8	-3.6	24.8	Non Acid Forming (Barren)
20	EB1914213005	Vulcan	145167	VSW052_C	Conglomerate 100%	Conglomerate	32.40		5.00	8.18	222	0.005		0.2	6.1	-5.9	39.8	Non Acid Forming (Barren)
21	EB1914213009	Vulcan	145304	VSW070 C	Sandstone 100%	Sandstone	7.00		9.00	9.03	127	0.005		0.2	3.2	-3.0	20.9	Non Acid Forming (Barren)
22 23	EB1914213010 EB1914213011	Vulcan Vulcan	145305 - 145306 145307	VSW070_C	Sandstone 100% Sandstone 100%	Sandstone Sandstone	16.00 23.00	23.00 25.00	7.00	9.59	176 131	0.005		0.2	10.6	-10.4	69.2	Non Acid Forming (Barren) Non Acid Forming (Barren)
23	EB1914213011 EB1914213015	Vulcan	145307	VSW070_C VSW070_C	Sandstone 100% Sandstone 100%	Sandstone	23.00	32.00	4.01	8.45 8.74		0.02		0.6	0.9	-0.3 -9.8	1.5 4.6	Non Acid Forming (Barren) Non Acid Forming (Barren)
24	EB1914213016	Vulcan	145312	VSW070_C	Sandstone 100%	Sandstone	32.00	37.00	5.00	9.12	174	0.09		1.2	13.9	-9.0	4.0	Non Acid Forming (Barren)
25	EB1914213017	Vulcan	145312	VSW070_C	Sandstone 100%	Sandstone	37.00		4.00	9.12		0.04		1.2	17.2	-12.7	11.3	Non Acid Forming (Barren)
27	EB1914213021	Vulcan	134784	VSW082 C	Sandstone 100%	Sandstone	5.00	16.00	11.00	8.28	754	0.005		0.2	8.0	-7.8	52.2	Non Acid Forming (Barren)
28	EB1914213025	Vulcan	134788	VSW082 C	Sandstone 100%	Sandstone	20.00	26.08	6.08	8.24		0.03		0.9	10.5	-9.6	11.4	Non Acid Forming (Barren)
29	EB1914213028	Vulcan	134791	VSW083 C	Sandstone 100%	Sandstone	4.00	20.00	16.00	9.11		0.005		0.2	7.8	-7.6	50.9	Non Acid Forming (Barren)
30	EB1914213029	Vulcan	134792	VSW083_C	Sandstone 100%	Sandstone	20.00		1.77	8.83	172	0.02		0.6	8.6	-8.0	14.0	Non Acid Forming (Barren)
31	EB1914213031	Vulcan	134794	VSW083_C	Sandstone 100%	Sandstone	21.97		2.03	7.83	522	0.005		0.2	11.2	-11.0	73.1	Non Acid Forming (Barren)
32	EB1914213033	Vulcan	134796	VSW083_C	Sandstone 100%	Sandstone	25.00		5.86	8.00	213	0.005		0.2	8.2	-8.0	53.6	Non Acid Forming (Barren)
33	EB1914213041	Vulcan		VSW084_C	Sandstone 100%	Sandstone	19.00	26.00	7.00	9.07	417	0.02		0.6	9.1	-8.5	14.9	Non Acid Forming (Barren)
34	EB1914213043	Vulcan	163127 - 163128		Sandstone 100%	Sandstone	27.00		10.00	8.64		0.02		0.6	6.8	-6.2	11.1	Non Acid Forming (Barren)
35 36	EB1914213044 EB1914213056	Vulcan Vulcan	163129 - 163131	VSW084 C VSW087 C	Sandstone 100% Sandstone 100%	Sandstone	37.00 4.00	42.84 9.00	5.84 5.00	8.39	98	0.005		0.2	2.4	-2.2	15.7	Non Acid Forming (Barren)
30	EB1914213056	Vulcan	163004 163005 - 163006		Sandstone 100%	Sandstone Sandstone	9.00		4.00	9.57 8.98	460 481	0.02		0.6	92.1 26.9	-91.5 -26.3	150.4 43.9	Non Acid Forming (Barren)
38	EB1914213058	Vulcan	163007 - 163009		Sandstone 100%	Sandstone	13.00	18.00	5.00	9.11		0.002		0.0	6.9	-20.3	45.1	Non Acid Forming (Barren)
39	EB1914213059	Vulcan	163010	VSW087 C	Sandstone 100%	Sandstone		21.00	3.00	8.60	224	0.02		0.6	5.3	-4.7	8.7	Non Acid Forming (Barren)
40	EB1914213060	Vulcan	163011	VSW087 C	Sandstone 100%	Sandstone		24.02	3.02	8.71	111	0.02		0.6	3.0	-2.4	4.9	Non Acid Forming (Barren)
41	EB1914213066	Vulcan	163018 - 163019		Sandstone 100%	Sandstone		18.00	6.00	9.73	270	0.005		0.2	52.0	-51.8	339.6	Non Acid Forming (Barren)
42	EB1914213067	Vulcan	163020 - 163022	VSW088 C	Sandstone 100%	Sandstone	18.00		5.00	9.34	132	0.005		0.2	6.4	-6.2	41.8	Non Acid Forming (Barren)
43	EB1914213068	Vulcan	163023	VSW088_C	Sandstone 100%	Sandstone		29.00	6.00	9.08	85	0.005		0.2	3.5	-3.3	22.9	Non Acid Forming (Barren)
44	EB1914214024	Vulcan	163042 - 163043		Sandstone 100%	Sandstone		12.00	3.00	8.37	570	0.03		0.9	28.3	-27.4	30.8	Non Acid Forming (Barren)
45	EB1914214025	Vulcan	163044	VSW095_C	Sandstone 100%	Sandstone	12.00		2.00	8.84	553	0.03		0.9	63.9	-63.0	69.6	Non Acid Forming (Barren)
46	EB1914214027	Vulcan	163046 - 163047		Sandstone 100%	Sandstone	15.00		3.00	8.60	591	0.03		0.9	16.8	-15.9	18.3	Non Acid Forming (Barren)
47 48	EB1914214028 EB1914214029	Vulcan Vulcan	163048 - 163050 163201	VSW095_C VSW095_C	Sandstone 100% Sandstone 100%	Sandstone Sandstone	18.00	24.00 25.00	6.00 1.00	8.89 8.56	194 124	0.02		0.6	15.9 6.4	-15.3 -5.8	26.0	Non Acid Forming (Barren)
48 49	EB1914214029	Vulcan	163253 - 163254	VSW095_C VSW099_C	Sandstone 100%	Sandstone	3.00		4.00	7.98	224	0.02		0.6	0.25	-5.8	10.4 0.2	Non Acid Forming (Barren) Non Acid Forming (Barren)
49 50	EB1914214033	Vulcan	163255 - 163256	VSW099 C	Sandstone 100%	Sandstone	7.00	14.00	7.00	8.97	253	0.004		0.2	5.1	-5.1	33.3	Non Acid Forming (Barren)
51	EB1914214035	Vulcan	163257 - 163258	VSW099 C	Sandstone 100%	Sandstone	14.00	19.00	5.00	8.61	212	0.003		0.6	6.6	-6.0	10.8	Non Acid Forming (Barren)
52	EB1914214036	Vulcan	163259 - 163260	VSW099_C	Sandstone 100%	Sandstone	19.00	22.80	3.80	8.28	214	0.005		0.2	0.25	-0.1	1.6	Non Acid Forming (Barren)
53	EB1914214041	Vulcan	163236	VSW104_C	Sandstone 100%	Sandstone	4.00	7.00	3.00	9.46	375	0.005		0.2	45.6	-45.6	297.8	Non Acid Forming (Barren)
54	EB1914214042	Vulcan	163237	VSW104_C	Sandstone 100%	Sandstone	7.00	14.00	7.00	8.98	240	0.03		0.9	13.2	-12.3	14.4	Non Acid Forming (Barren)
55	EB1914214043	Vulcan	163238 - 163240	VSW104_C	Sandstone 100%	Sandstone	14.00	20.00	6.00	8.67	283	0.005		0.2	10.1	-10.1	66.0	Non Acid Forming (Barren)
56	EB1914214045	Vulcan	163242	VSW104_C	Sandstone 100%	Sandstone	21.00	28.00	7.00	8.27	276	0.005		0.2	8.1	-8.1	52.9	Non Acid Forming (Barren)
57	EB1914214046	Vulcan	163243	VSW104_C	Sandstone 100%	Sandstone	28.00	30.00	2.00	9.03	163	0.02		0.6	12.9	-12.3	21.1	Non Acid Forming (Barren)
58 59	EB1914213024	Vulcan	134787	VSW082_C	Siltstone 100%	Siltstone	18.70	20.00	1.30	7.76	820	0.02		0.6	9.7	-9.1	15.8	Non Acid Forming (Barren)
59 60	EB1914213032	Vulcan	134795 163024	VSW083_C	Siltstone 100%	Siltstone	24.00 29.00	25.00	1.00	7.93	355	0.02		0.6	11.1	-10.5	18.1	Non Acid Forming (Barren)
60	EB1914213069 EB1914213001	Vulcan Vulcan	145163	VSW088_C VSW052_C	Siltstone 100% Clay 100%	Siltstone Clay	29.00	30.00 5.00	4.90	8.16 8.92	129 607	0.02		0.6	9.2 21.1	-8.6 -20.5	15.0 34.4	Non Acid Forming (Barren)
62	EB1914213001	Vulcan	145165	VSW052_C VSW052_C	Clay 100%	Clay	5.00	10.00	4.90	8.92	607	0.02		0.6	92.0	-20.5	34.4 150.2	Non Acid Forming (Barren)
63	EB1914213002	Vulcan	145165	VSW052_C	Clay 100%	Clay	25.00	30.00	5.00	8.47	342	0.02		0.6	5.8	-5.2	9.5	Non Acid Forming (Barren)
64	EB1914213006	Vulcan	145301	VSW070 C	Clay 100%	Clay	0.00	3.00	3.00	8.62	675	0.02		0.6	23.4	-22.8	38.2	Non Acid Forming (Barren)
65	EB1914213007	Vulcan	145302	VSW070 C	Clay 100%	Clay	3.00		3.00	6.44		0.02		0.6	11.7	-11.1	19.1	Non Acid Forming (Barren)
66	EB1914213019	Vulcan	134782	VSW082 C	Clay 100%	Clay	1.00	2.00	1.00	8.54	818	0.005		0.2	38.7	-38.5	252.7	Non Acid Forming (Barren)
67	EB1914213020	Vulcan	134783	VSW082_C	Clay 100%	Clay	2.00		3.00	8.22	655	0.005		0.2	25.6	-25.4	167.2	Non Acid Forming (Barren)
68	EB1914213027	Vulcan	134790	VSW083_C	Clay 100%	Clay	1.00		3.00	8.45	250	0.02		0.6	66.2	-65.6	108.1	Non Acid Forming (Barren)
69	EB1914213035	Vulcan	163118	VSW084_C	Clay 100%	Clay	3.00	7.00	4.00	8.68	879	0.005		0.2	85.6	-85.4	559.0	Non Acid Forming (Barren)
70	EB1914213038 EB1914213040	Vulcan Vulcan	163121	VSW084_C	Clay 100%	Clay	14.00	16.00	2.00	8.29	725	0.02		0.6	20.4	-19.8	33.3	Non Acid Forming (Barren)
71			163123	VSW084 C	Clav 100%	Clav	18.00	19.00	1.00	7.88	776	0.02		0.6	96	-9.0	15.7	Non Acid Forming (Barren)

Table B2: Acid Base Account test results for waste rock samples

ID ID<	RGS		Denesit	Vitronite Sample	Drill Hole ID	Semale Lithele mi	Samuela Turna	From	То	Interval	1	EC ¹	Total S	Scr	MPA ²	ANC ²	NAPP ²	ANC:MPA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample ID	ALS Sample ID	Deposit	ID	Drill Hole ID	Sample Lithology	Sample Type		(m)		pH ¹	(µS/cm)	(%)	(kg H₂SO₄/t	:)	Ratio	Sample Classification ³
The Set Trace Set Vision Control Control Control Control Set Trace Set Vision Set Trace Set Visio	72	EB1914213046	Vulcan	134797	VSW085 C	Clav 100%	Clav	0.00	2.00	2.00	8.41	313	0.02		0.6	27.1	-26.5	44.2	Non Acid Forming (Barren)
7: C B1114(2008) Value	73	EB1914213047	Vulcan	134798 - 134799	VSW085 C	Clay 100%	Clay	2.00	8.00	6.00					0.2			829.4	Non Acid Forming (Barren)
75 Ethild 1008 Value 14780	74	EB1914213048	Vulcan	1347800	VSW085 C	Clay 100%	Clay	8.00	14.00	6.00					0.2			329.1	Non Acid Forming (Barren)
P7 EUB191221005 Vuice 19700 P300 P300 <td>75</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>220.7</td> <td>Non Acid Forming (Barren)</td>	75							14.00										220.7	Non Acid Forming (Barren)
Pro E8914(2000) Volume Volume Construction	76	EB1914213050	Vulcan	1347803 - 1347804	VSW085 C	Clay 100%	Clay			7.00			0.02		0.6	23.7	-23.1	38.7	Non Acid Forming (Barren)
Pro E8914(2000) Volume Volume Construction	77	EB1914213051	Vulcan	1347805	VSW085 C	Clay 100%	Clay	25.00	29.00	4.00					0.6			13.9	Non Acid Forming (Barren)
79 Estimation Control Contro Contro Control	78	EB1914213052	Vulcan	1347806		Clay 100%	Clay	29.00	30.71	1.71	8.05	291	0.03		0.9	5.9	-5.0	6.4	Non Acid Forming (Barren)
string construction		EB1914213064							7.00		8.87				0.6			173.1	Non Acid Forming (Barren)
Bit International State Wards Carl 100%	80	EB1914213065	Vulcan		VSW088_C		Clay		12.00	5.00	9.16	342	0.02		0.6	91.5	-90.9	149.4	Non Acid Forming (Barren)
Bit Bit PLACED Vuluen TABLE Values Construction Constantin test in a state Construction <td></td> <td>1423.7</td> <td>Non Acid Forming (Barren)</td>																		1423.7	Non Acid Forming (Barren)
Best EB191424005 Vucen 134812 VSWM98 C Club 100% Club 200 1200 7.67 401 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.1 7.1 1.4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 7.1 1.4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.00																		28.8	Non Acid Forming (Barren)
Bit High 24605 Vulces Table 13 VSWM96 C Clay 100% Clay 200 30.2 22.3 8.40 107 0.005 0.2 7.1 -7.1																		123.4	Non Acid Forming (Barren)
BB EB191424007 Vucan 1384E5 VSW000 C Cuiy 100% Cuiy 100 5.00 4.00 8.00 17.5 0.005 0.02 11.5 11.3																		36.1	Non Acid Forming (Barren)
BF191424089 Vutant 134815 VUant 134815 VUant <td></td> <td>46.4</td> <td>Non Acid Forming (Barren)</td>																		46.4	Non Acid Forming (Barren)
B8 E8191424000 Vutan 134819 VSW000 C Clay 10% Clay 10.00																		73.8	Non Acid Forming (Barren)
Bit Effort Union 1.00 6.00 6.40 6.49 0.005 0.2 0.2 0.8 0.2 0.2 0.8																		174.7	Non Acid Forming (Barren)
90 EB19F424016 Vulcan 13483 VSW092 C Clay 100 E151 110 1110																		114.4	Non Acid Forming (Barren)
91 EB191422407 Vulcan 14368 VSW082 C Clay 100% Clay 100 8.52 486 0.005 6.73 430 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 6.65 10.3 0.02 0.02 10.0 </td <td>00</td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td>193.3</td> <td>Non Acid Forming (Barren)</td>	00													ļ				193.3	Non Acid Forming (Barren)
92 EB1914214022 Vuican 16309 1630																		724.9	Non Acid Forming (Barren)
93 EB19424402 Vucan 163224 222 Vucan 163234 225 361 94 EB19424404 Vucan 163234 16324 1632 16324														I					Non Acid Forming (Barren)
94 EB19421440 Vuican 15823 VSW104_C Clayton 000 400 3.00 921 583 0.005 0.2 1580 1630 96 EB19421302 Vuican 133785 VSW082_C Claytone 100%														I				16.8	Non Acid Forming (Barren)
95 EB1914/21012 Vuican 143208 VSW070 C Claystone 100% Claystone 4500 7.00 8.55 244 0.02 0.6 2.4 1.18 0.53 96 EB1914471302 Vuican 154126 VSW082 C Claystone 100% Claystone 2500 7.00 1.00 7.55 2.51 0.02 0.06 8.4 7.8 1.3 97 EB1914471032 Vuican 15426 VSW080 C Claystone 100% Claystone 100% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Non Acid Forming (Barren)</td></t<>																			Non Acid Forming (Barren)
96 EB1914213022 Vuican 134785 VSW082 C Claystone 1600 17.70 1.70 6.81 243 0.02 0.6 5.4 4.8 6.8 97 E5191421401 Vuican 13422 VSW080 C Claystone 1000 20.0 1.00 3.1 2.20 0.22 0.6 6.4 4.7.8 1.3 90 E51914214017 Vuican 134820 VSW080 C Claystone 1000 2.00 1.00 5.0 2.20 2.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.22 1.23 1.24 1.23 1.24 1.23 1.24 1.23 1.24 1.23 1.24 1.23 <td></td> <td>1031.8</td> <td>Non Acid Forming (Barren)</td>																		1031.8	Non Acid Forming (Barren)
97 EB191421362 Vulcan 115126 VSW084 C Charlstone 100% Claystone 28.00 27.00 1.00 7.96 251 0.02 0.06 84.4 -7.8 1.01 96 EB1014214012 Vulcan 134822 VSW080 C Claystone 100% Claystone 100% Claystone 100% Claystone 100% Claystone 20.00 1.00 0.13 2.20 0.005 0.2 1.2 1.2 1.2 1.2 1.2 1.01																			Non Acid Forming (Barren)
Be EB1914214010 Vulcan 134820 VSW090 C Claystone 100% Claystone 20.00 10.00 9.13 220 0.005 0.02 1.0 0.13 220 0.005 0.02 1.2 7.0 <																			Non Acid Forming (Barren)
99 EB1914214012 Vuican 134822 VSW090 C Claystone 100% Claystone 22:00 1:00 6:13 2:20 0.005 0:2 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:22 1:23 1:23 1:23 1:23 1:23 1:23 1:13 1:23 1:23 1:13 1:23 1:13 1:23 1:13 1:23 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 1:14 <td></td> <td>Non Acid Forming (Barren)</td>																			Non Acid Forming (Barren)
100 EB1914214013 Vuican 134823 VSW090 C Claystone 100% Claystone 27.00 38.8 3.87 8.77 112 0.005 0.2 7.0 4.70 101 EB1914214020 Vuican 1633045 VSW095 C Claystone 100% Claystone 14.00 15.00 1.00 7.86 6.34 0.03 0.9 10.6 9.7 1.11 103 EB1914214030 Vuican 163300 VSW070 C Claystone 100% Claystone 25.00 2.86 0.48 8.73 1.12 2.80 0.16 4.7 1.43 1.14 1.2 3.60 0.16 4.7 4.83 1.14 1.2 3.60 0.16 4.7 4.83 1.14 1.2 3.60 0.16 4.7 4.14 1.1 1.2 3.60 0.16 4.7 4.83 1.1 1.2 3.60 0.16 4.7 4.83 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.2 1.1 1.1																			Non Acid Forming (Barren)
101 EB1914214020 Vuican 134839 VSW095 C Claystone 100% Claystone 12.00 22.02 7.96 4.96 0.02 0.06 1.21 1.11.5 1.91 102 EB1914214020 Vuican 163300 Vuican 163202 VSW095 C Claystone 100% Claystone 1200 25.00 25.84 0.84 8.73 1.47 0.005 0.2 6.7 6.7 6.7 4.57 1.43 1.05 0.91 1.06 9.91 1.06 9.91 1.1 1.2 6.11 1.2 1.1 1.2																			Non Acid Forming (Barren)
1102 EB1914214020 Vuican 163045 VSW095 C Claystone 100% Claystone 14.00 15.00 1.00 7.89 634 0.03 0.9 10.6 -9.7 11.1 103 EB191421031 Vuican 145306 VSW07C Carb. Sandstone 100% Carbonaceous 26.00 27.53 17.53 9.19 224 0.06 2.5 14.7 1.2.3 6.0 105 EB1914210314 Vuican 14510 VSW07C Weathered Coal 100% Carbonaceous 27.53 27.99 0.46 8.29 27.0 0.30 0.15 4.7 1.1 1.2 106 EB191421045 Vuican 13476 Vuican 1343 1.4 1.																			Non Acid Forming (Barren) Non Acid Forming (Barren)
103 EB1914214303 Vulcan 163202 VSW095 C Calaytone 100% Calaytone 25.00 25.84 0.54 8.73 147 0.005 0.02 6.7 6.7 4.33 104 EB1914213013 Vulcan 145300 VSW070 C Carbonaceous 27.03 15.3 9.19 224 0.08 2.5 14.7 1.23 6.00 105 EB1914213014 Vulcan 14746 VSW082 C Weathered Coal 25%, Siltsone 75% Carbonaceous 27.07 1.07 16.80 1.33 0.03 0.09 13.3 1.24 14.1 107 EB1914213045 Vulcan 153.2 VSW082 C Weathered Coal 25%, Siltsone 75% Carbonaceous 27.17 1.97 0.20 7.31 862 0.04 1.2 1.60 -1.4.8 13.3 110 EB1914213045 Vulcan 163024 Vulcan 163024 VSW087 C Carbonaceous 27.84 4.34 4.36 4.36 4.36 4.36 4.37 1.47 1.23 6.00 1.47 1.23 6.00 1.47 1.23 1.47																			Non Acid Forming (Barren)
104 EB1914213013 Vulcan 145300 VSW070 C Carbonaceous 28.00 27.53 15.3 9.19 224 0.06 2.5 14.7 -1.2 16.2 105 EB1914213023 Vulcan 134786 VSW082 C Weathered Coal 100% Carbonaceous 17.70 18.70 1.00 8.19 333 0.03 0.0 1.47 1.48 1.43 106 EB1914213023 Vulcan 143786 VSW083 C Weathered Coal 100% Carbonaceous 21.77 21.97 2.00 7.31 682 0.04 1.2 16.0 14.8 14.3 106 EB1914213054 Vulcan 163132 VSW087 C Carbonaceous 22.48 82.86 40.77 8.80 17.2 0.0.2 6.4 11.4 110 EB1914214015 Vulcan 134821 VSW080 C Claystone 89%, Carb Claystone 87%, Carbonaceous 70.00 8.26 2.32 0.005 0.2 6.4 1.4.7 2.9.1 111 EB1914214015 Vulcan 134821 VSW080 C Claystone 89%, Carb Claystone 87%, Carbonaceous <																			Non Acid Forming (Barren)
105 EB1914210314 Vulcan 143310 VSW070 C Weathered Coal 25%, Siltsone 75% Carbonaceous 17.70 18.70 1.00 8.19 33 0.03 0.05 1.24 14.14 106 EB191421030 Vulcan 134786 VSW082 C Weathered Coal 25%, Siltsone 75% Carbonaceous 17.77 11.87 1.00 8.19 33 0.03 0.04 1.2 16.0 -1.44 13.1 106 EB191421030 Vulcan 163013 VSW087 C Carb Carstone 30%, Carb Sandstone 62% Carbonaceous 4.28 4.37 0.90 8.26 22.0 0.6 7.0 -6.4 1.4 100 EB191421031 Vulcan 134821 VSW090 C Claystone 2% Carbonaceous 2.00 6.00 8.38 467 0.00 2.2 1.6.8 1.1.2 2.11 1.2 1.12 EB191421031 Vulcan 134833 VSW092 C Claystone 2% Carbonaceous 1.00 3.38 4.64 0.00 0.6 1.4.8 1.1.2 2.4 1.4 1.4 1.1.2 1.1.2 1.1.2 1.																			Non Acid Forming (Barren)
106 EB1914213023 Vuican 134783 VSW083 C Weathered Coal 100% Carbonaceous 17.70 18.70 1.00 8.19 333 0.03 0.9 133 1.12 1.41 107 EB1914213025 Vuican 163132 VSW083 C Weathered Coal 100% Carbonaceous 42.84 43.74 0.90 8.26 232 0.005 0.2 8.3 8.41 54.1 109 EB191421005 Vuican 134821 VSW0807 C Carbonaceous 24.84 43.74 0.90 8.26 63.0 60.0 2.83 4.11 110 EB1914214011 Vuican 134837 VSW082 C Claystone 2%, Carb Carbonaceous 2.000 6.00 8.8 467 0.005 0.2 1.68 1.17.2 1.91 112 EB1914214019 Vuican 134837 VSW092 C Claystone 3%, Carb Carbonaceous 2.400 2.400 1.20 8.6 6.005 0.2 6.6 1.48<														0.15					Uncertain
107 EB191421303 Vulcan 163132 VSW083 C Wethered Coal 100% Carbonaceous 21.77 21.97 0.20 7.31 682 0.04 1.2 16.0 14.8 15.3 108 EB1914213062 Vulcan 163132 VSW087 C Carb Claystone 3%, Carb Claystone 2%. Carbonaceous 24.84 43.74 0.00 8.60 172 0.02 0.6 7.0 -6.4 11.1 110 EB1914214018 Vulcan 134831 VSW092 C Claystone 3%, Carb Claystone 2%. Carbonaceous 13.00 17.68 4.69 8.00 560 0.02 0.6 18.3 +1.7 2.99 1112 EB1914214037 Vulcan 163262 VSW099 C Claystone 3%, Carb Claystone 1%. Carbonaceous 24.00 1.20 8.26 365 0.005 0.22 6.6 4.04 113 EB1914214037 Vulcan 163262 VSW099 C Claystone 3%. Carb Claystone 1%. Carbonaceous 24.00 1.20 8.26 365 0.005 <td>100</td> <td></td> <td>0.15</td> <td></td> <td></td> <td></td> <td></td> <td>Non Acid Forming (Barren)</td>	100													0.15					Non Acid Forming (Barren)
108 EB1914213045 Vuican 163313 VSW087 C Carb Siltstone 62% Carbonaceous 42.84 43.74 0.90 82.6 232 0.005 0.02 6.7 0.6 4.1 109 EB191421005 Vuican 153437 VSW087 C Carb Siltstone 2% Carbonaceous 20.00 26.00 6.00 8.38 407 0.002 0.6 18.5																			Non Acid Forming (Barren)
100 EB1914213062 Vulcan 163013 VSW097 C Carbonaceous 24.88 28.95 4.07 8.80 172 0.02 0.6 7.0 6.4 11.1 110 EB1914214018 Vulcan 134821 VSW092 C Claystone 89%, Carb Claystone 2% Carbonaceous 13.00 17.69 4.69 8.00 560 0.02 0.6 14.8 14.7.7 29.0 112 EB1914214037 Vulcan 163281 VSW099 C Claystone 89%, Carb Claystone 14% Carbonaceous 22.80 24.00 1.20 8.28 665 0.005 0.2 6.2 6.0 40.0 114 EB1914214037 Vulcan 163282 VSW099 C Claystone 89%, Carb Silstone 10% Carbonaceous 24.00 1.20 8.28 665 0.005 0.2 7.1 6.9 4.6. 114 EB1914214037 Jupiter 334417 VSW019 C Sand 50%, Sand 50% Soil 0.00 1.00 7.0 6.4 4.1.2 2.2 EB19142																			Non Acid Forming (Barren)
110 EB191421401 Vulcan 134837 VSW090 C Claysop 8%, Carb Claysop 7% Carbonaceous 13.00 6.00 8.38 4.67 0.005 0.2 18.5 -18.3 17.0 29.9 111 EB1914214019 Vulcan 134837 VSW092 C Claysop 8%, Carb Claysop 1%, Carb Claysone 14%, Carbonaceous 17.69 4.69 8.00 560 0.02 0.6 14.8 -17.2 29.1 113 EB1914214019 Vulcan 163261 VSW099 C Claysop 8%, Carb Claysop 4%, Carb Claysop 1%, Carb Claysop 24.00 12.0 8.26 6.00 9.30 220 0.6 14.8 -14.2 24.1 114 EB1914214047 Vulcan 163281 VSW099 C Carb Sandstone 10%, Carb Sintsone 20% Carbonaceous 24.00 22.0 0.02 0.6 13.6 -13.0 22.2 115 EB1914214047 Jupter 335480 VSW017 C Sand 100% Soil 0.10 1.00 6.90 6.91 6.0 2.0 2.6 2.4 0.4 0.4 0.2 1.6 1.02 0.0 1.00 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Non Acid Forming (Barren)</td></t<>																			Non Acid Forming (Barren)
111 EB1914214018 Vulcan 134837 VSW092 C Clay y9%, Weathered Coal 1% Carbonaccous 13.00 17.6 4.69 8.00 560 0.02 0.6 18.3 -17.7 29.1 112 EB1914214037 Vulcan 163261 VSW099 C Claystone 19%, Carb Claystone 11% Carbonaccous 22.80 24.00 1.20 8.26 365 0.002 0.6 14.8 1.42 24.4 113 EB1914214038 Vulcan 163262 VSW099 C Claystone 80%, Carb Slatstone 10% Carbonaccous 22.00 21.00 1.00 7.84 481 0.005 0.2 7.1 6.9 46.0 115 EB1914214047 Jupiter 335480 VSW017 C Sand 100% Soil 0.00 1.00 1.00 7.84 481 0.005 0.2 1.7 1.5 11.1 115 EB1914214051 Jupiter 335477 VSW019 C Sand 50%, Sand 500 Soil 0.00 1.00 1.00 6.6 1.6 0.2 5.0 4.4 4.4 4.44 4.44 4.44 4.44 <td></td> <td>Non Acid Forming (Barren)</td>																			Non Acid Forming (Barren)
112 EB1914214019 Vulcan 134838 VSW092 C Claystone 35%, Vancen 11% Carbonaceous 27.69 21.00 3.31 8.24 6.48 0.02 0.6 14.8 -14.2 24.24 113 EB1914214033 Vulcan 163262 VSW099 C Claystone 10%, Carb Claystone 10%, Carb Claystone 20%, Soil 0.10 1.00 0.90 6.81 166 0.02 0.6 0.25 0.4 0.4 2 EB1914214051 Jupiter 13477 VSW077 C Sand 50%, Sand Stone Soil 0.00 1.00 1.00 6.91 6.9 6.9 6.5 0.4 0.4 4 EB1914214054 Jupiter 134770 VSW080 C Sand 50%, Sand 50% Soil 0.00 1.00 1.00 <td></td> <td></td> <td></td> <td>134837</td> <td>VSW092_C</td> <td></td> <td>29.9</td> <td>Non Acid Forming (Barren)</td>				134837	VSW092_C													29.9	Non Acid Forming (Barren)
113 EB1914214037 Vulcan 163261 VSW09 C Carbonaceous 22.80 24.00 1.20 8.26 0.005 0.2 6.2 6.0 400 114 EB1914214038 Vulcan 163261 VSW09 C Carbonaceous 24.00 24.00 9.0 20.00 21.00 1.00 7.94 481 0.005 0.2 7.1 6.9 46.0 115 EB1914214047 Jupiter 335440 VSW017 C Sandstone 80%, Carb Siltstone 20% Carbonaceous 20.00 21.00 1.00 6.91 66 0.22 0.4 0.4 2 EB1914214051 Jupiter 335477 VSW017 C Sandstone 50% Soil 0.00 3.00 6.12 81 0.005 0.22 0.6 0.25 0.4 0.4 4 EB1914214051 Jupiter 134772 VSW077 C Sandstone 50% Soil 0.00 1.00 1.00 6.17 109 0.02 0.6 6.5 9.5 5.3 9.5 9.5 9.5 1.4 9.8 3.3.3 7 EB1914214064 </td <td></td> <td>24.2</td> <td>Non Acid Forming (Barren)</td>																		24.2	Non Acid Forming (Barren)
114 EB1914214038 Vulcan 163282 VSW099 C Carb Sandstone 100% Carbonaceous 20.00 29.60 5.60 9.30 220 0.02 0.6 13.6 -13.0 222.1 115 EB1914214047 Jupiter 335480 VSW017 C Sandstone 80%, Carb Stitistone 20% Carbonaceous 20.00 21.00 1.00 7.84 481 0.005 0.2 7.1 -6.9 46.4 2 EB1914214051 Jupiter 335477 VSW019 C Sand 100% Soil 0.00 1.00 1.00 6.91 166 0.02 0.6 0.25 0.4 0.4 4 EB1914214064 Jupiter 134770 VSW080 C Sand 100% Soil 0.00 1.00 6.97 143 0.02 0.6 5.9 -5.3 9.6 5 EB1914214064 Jupiter 134770 VSW080 C Carb Sandstone 100% Soil 0.00 1.00 1.00 6.93 122 0.02 0.6 1.6																		40.5	Non Acid Forming (Barren)
115 EB1914214044 Vulcan 163241 VSW104_C Sandstone 80%, Carb Silistone 20% Carbonaceous 20.00 21.00 1.00 7.84 481 60.005 0.2 7.1 -6.9 46.4 1 EB1914214051 Jupiter 335477 VSW019 C Sand 100% Soil 0.00 3.00 6.12 81 0.005 0.2 1.7 -1.5 11.1 3 E81914214054 Jupiter 134772 VSW077 C Sand 50%, Sandstone 50% Soil 0.00 1.00 6.59 43 0.02 0.6 0.25 0.4 0.4 4 E81914214064 Jupiter 134770 VSW076 C Sand 100% Soil 0.00 1.00 6.57 152 0.02 0.6 6.5.9 -5.3 96 5 E81914214064 Jupiter 134511 VSW070 C Clay 100% Clay 0.00 1.00 1.00 6.57 152 0.02 0.6 1.6 -1.0 2.6 6 E81914214064 Jupiter 335471 VSW017 C Sandstone 100% Sandstone 100%																		22.2	Non Acid Forming (Barren)
1 EB1914214047 Jupiter 335480 VSW017 C Sand 100% Soil 0.10 1.00 0.90 6.91 1.66 0.02 0.6 0.25 0.4 0.4 2 EB1914214051 Jupiter 335477 VSW019 C Sand 50%, Sandstone 50% Soil 0.00 1.00 6.59 43 0.022 0.6 0.25 0.4 0.4 4 EB1914214064 Jupiter 134770 VSW080 C Sand 100% Soil 0.00 1.00 6.77 152 0.02 0.6 0.25 0.4 0.4 4 EB1914214064 Jupiter 134770 VSW080 C Sand 100% Soil 0.00 1.00 6.77 152 0.02 0.6 6.99 4.3 0.02 0.6 5.9 4.3 0.02 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.0 0.25 1.1	115	EB1914214044	Vulcan			Sandstone 80%, Carb Siltstone 20%	Carbonaceous			1.00								46.4	Non Acid Forming (Barren)
2 EB1914214051 Jupiter 335477 VSW019 C Sand 97%, Soil 3% Soil 0.00 3.00 6.12 81 0.005 0.2 1.7 -1.5 11.7 3 EB1914214051 Jupiter 134772 VSW077 C Sand 50%, Sandstone 50% Soil 0.00 1.00 6.59 43 0.02 0.6 5.9 -5.3 9.6 5 EB1914214054 Jupiter 145151 VSW080 C Clay 100% Clay 0.00 1.00 6.67 152 0.02 0.6 1.6 -1.0 2.6 6 EB1914214064 Jupiter 1435171 VSW017 C Sandstone 50% Clay 0.00 2.00 2.00 8.22 120 0.005 0.2 0.1 4.9 333.7 7 EB1914214048 Jupiter 335481 VSW017 C Sandstone 100% Sandstone 3.00 2.00 8.22 120 0.005 0.2 0.1 1.6 3.0 2.2 1.2 -1.0 7.8 1.9 1.1 1.6 1.6 1.6 1.0 3.0	1	EB1914214047	Jupiter	335480	VSW017 C	Sand 100%	Soil	0.10	1.00	0.90						0.25	0.4	0.4	Non Acid Forming (Barren)
3 EB1914214059 Jupiter 134772 VSW077 C Sand 50%, Sandstone 50% Soil 0.00 1.00 6.59 43 0.02 0.6 0.25 0.4 0.4 4 EB1914214054 Jupiter 134770 VSW080 C Sand 100% Soil 0.00 1.00 1.00 6.17 109 0.02 0.6 5.9 -5.3 9.6 5 EB1914214056 Jupiter 134871 VSW022 C Clay 100% Clay 0.00 1.00 1.00 6.63 192 0.02 0.6 5.9 -5.3 9.6 6 EB1914214066 Jupiter 134871 VSW017 C Sandstone 100% Sandstone 1.00 3.00 2.00 8.22 120 0.005 0.2 5.1 4.9 33.3 7 EB1914214048 Jupiter 335481 VSW017 C Sandstone 100% Sandstone 100% Sandstone 100% 3.00 7.07 151 0.005 0.2 1.2 -1.0 7.8 9 EB1914214053 Jupiter 335437 VSW017 C Sandstone 100% Sandstone 10%	2			335477		Sand 97%, Soil 3%								1				11.1	Non Acid Forming (Barren)
4 EB1914214064 Jupiter 134770 VSW080 C Sand 100% Soil 0.00 1.00 6.17 109 0.02 0.6 5.9 -5.3 9.6 5 EB1914214054 Jupiter 145151 VSW022 C Clay 100% Clay 0.00 1.00 6.67 152 0.02 0.6 1.6 -1.0 2.6 6 EB1914214066 Jupiter 33481 VSW017 C Sandstone 100% Sandstone 1.00 3.00 2.00 8.22 120 0.005 0.2 5.1 -4.9 33.7 7 EB1914214049 Jupiter 335482 VSW017 C Sandstone 100% Sandstone 6.00 7.59 1.59 6.14 159 0.11 0.08 2.5 2.2 0.3 0.9 10 EB1914214050 Jupiter 335483 VSW017 C Sandstone 100% Sandstone 1.00 3.00 7.07 151 0.005 0.2 1.2 1.0 7.8	3			134772				0.00						1				0.4	Non Acid Forming (Barren)
6 EB1914214066 Jupiter 134871 VSW103 C Clay 50% (Laystone 50% Clay 0.00 2.00 6.63 192 0.005 0.2 5.1 -4.9 33.3 7 EB1914214048 Jupiter 335481 VSW017 C Sandstone 100% Sandstone 1.00 3.00 2.00 8.22 120 0.005 0.2 0.21 -1.0 7.8 9 EB1914214050 Jupiter 335482 VSW017 C Sandstone 100% Sandstone 6.00 7.59 1.59 6.14 159 0.11 0.08 2.5 2.2 0.3 0.9 10 EB1914214053 Jupiter 335479 VSW019 C Sandstone 100% Sandstone 14.26 24.86 10.60 7.22 136 0.08 2.5 6.0 -3.6 2.4 1.0.0 4.6 2.5 0.09 2.8 12.8 10.0 4.60 1.22 0.03 0.01 1.0.0 2.5 0.6 -3.6 2.4 1.0.4	4	EB1914214064	Jupiter		VSW080 C		Soil	0.00	1.00						0.6	5.9	-5.3	9.6	Non Acid Forming (Barren)
7 EB1914214048 Jupiter 335481 VSW017_C Sandstone 100% Sandstone 1.00 3.00 2.00 8.22 120 0.005 0.2 0.25 -0.1 1.6 8 EB1914214049 Jupiter 335482 VSW017_C Sandstone 100% Sandstone 3.00 2.00 7.07 151 0.005 0.2 1.2 -1.0 7.8 9 EB1914214050 Jupiter 335483 VSW017_C Sandstone 100% Sandstone 6.00 7.59 1.59 6.14 159 0.11 0.08 2.5 2.2 0.3 0.9 10 EB1914214057 Jupiter 335479 VSW019_C Sandstone 100% Sandstone 14.26 24.86 10.00 7.22 1.36 0.08 2.5 0.60 -3.6 2.4 11 EB1914214067 Jupiter 134773 VSW077_C Sandstone 100% Sandstone 1.00 3.00 2.00 6.11 110 0.02 0.6 7.25 <td>5</td> <td>EB1914214054</td> <td></td> <td></td> <td>VSW022 C</td> <td>Clay 100%</td> <td></td> <td>0.00</td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td></td> <td></td> <td>2.6</td> <td>Non Acid Forming (Barren)</td>	5	EB1914214054			VSW022 C	Clay 100%		0.00	1.00					T				2.6	Non Acid Forming (Barren)
7 EB1914214048 Jupiter 335481 VSW017_C Sandstone 100% Sandstone 1.00 3.00 2.00 8.22 120 0.005 0.2 0.25 -0.1 1.6 8 EB1914214049 Jupiter 335482 VSW017_C Sandstone 100% Sandstone 3.00 7.07 151 0.005 0.2 1.2 -1.0 7.8 9 EB1914214050 Jupiter 335483 VSW017_C Sandstone 100% Sandstone 14.26 24.86 10.00 7.22 136 0.08 2.5 6.0 -3.6 2.4 11 EB1914214057 Jupiter 134574 VSW019_C Sandstone 100% Sandstone 14.26 24.86 10.00 7.22 136 0.08 2.5 0.6 0.25 0.4 0.4 0.4 13 EB1914214067 Jupiter 134773 VSW077_C Sandstone 100% Sandstone 1.00 3.00 2.00 6.11 110 0.02 0.6 0.25 0.4<	6		Jupiter															33.3	Non Acid Forming (Barren)
9 EB1914214050 Jupiter 335483 VSW017 C Sandstone 100% Sandstone 6.00 7.69 1.69 6.14 159 0.11 0.08 2.5 2.2 0.3 0.9 10 EB1914214057 Jupiter 335479 VSW019 C Sandstone 100% Sandstone 14.26 24.86 10.60 7.22 136 0.08 2.5 6.0 -3.6 2.4 11 EB1914214057 Jupiter 145154 VSW0072 C Sandstone 100% Sandstone 2.000 3.01 13.01 8.60 2.25 0.09 2.8 12.8 14.0 4.60 7.22 136 0.08 2.5 0.4 0.4 6.0 12 EB1914214067 Jupiter 134773 VSW077 C Sandstone 100% Sandstone 1.00 3.00 2.00 6.11 110 0.02 0.6 0.25 0.4 0.4 13 EB1914214065 Jupiter 134764 VSW078 C Sandstone 100% Sandstone 1.00 <td< td=""><td>7</td><td></td><td></td><td></td><td></td><td>Sandstone 100%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.6</td><td>Non Acid Forming (Barren)</td></td<>	7					Sandstone 100%												1.6	Non Acid Forming (Barren)
10 EB1914214053 Jupiter 335479 VSW019°C Sandstone 100% Sandstone 14.26 24.86 10.60 7.22 136 0.08 2.5 6.0 -3.6 2.4 11 EB1914214057 Jupiter 145154 VSW022°C Sandstone 100%, Carb Claystone <1%	8																	7.8	Non Acid Forming (Barren)
11 EB1914214057 Jupiter 145154 VSW022 C Sandstone 100%, Carb Claystone <1% Sandstone 20.00 33.01 13.01 8.60 225 0.09 2.8 12.8 -10.0 4.6 12 EB1914214062 Jupiter 134773 VSW077 C Sandstone 100% Sandstone 1.00 3.00 2.00 6.11 110 0.02 0.6 0.25 0.4 0.4 13 EB1914214062 Jupiter 134764 VSW078 C Sandstone 84% Sandstone 1.00 3.00 2.00 6.11 110 0.02 0.6 0.25 0.4 0.4 14 EB1914214062 Jupiter 134770 VSW080_C Sandstone 100% Sandstone 1.00 2.94 1.94 7.46 187 0.02 0.6 7.2 -6.6 111.0 15 EB1914214053 Jupiter 145155 VSW022 C Siltstone 100% Siltstone 3.01 43.01 10.20 8.76	9													0.08				0.9	Non Acid Forming (Barren)
12 EB1914214060 Jupiter 134773 VSW077 C Sandstone 100% Sandstone 1.00 3.00 2.00 6.11 110 0.02 0.6 0.25 0.4 0.4 13 EB1914214062 Jupiter 134764 VSW078 C Sandstone 84% Sandstone 0.00 3.17 3.17 6.25 52 0.03 0.9 11.0 -10.1 6.11 110 0.02 0.6 0.25 0.4 0.4 14 EB1914214065 Jupiter 134770 VSW080 C Sandstone 100% 2.94 1.94 7.46 187 0.02 0.6 7.2 -6.6 12.1 15 EB1914214055 Jupiter 145152 VSW022 C Shale 100% Siltstone 1.00 10.00 9.00 7.01 331 0.02 0.6 8.8 -8.2 14.4 16 EB1914214063 Jupiter 134767 VSW078 C Silitstone 100% Silitstone 4.45																		2.4	Non Acid Forming (Barren)
13 EB1914214062 Jupiter 134764 VSW078_C Sand 16%, Sandstone 84% Sandstone 0.00 3.17 3.17 6.25 52 0.03 0.9 11.0 -10.1 12.0 14 EB1914214065 Jupiter 134770 VSW080_C Sandstone 100% Sandstone 1.00 2.94 1.94 7.46 187 0.02 0.6 7.2 -6.6 11.8 15 EB1914214055 Jupiter 145152 VSW02_C Shale 100% Siltstone 1.00 1.00 9.00 7.01 331 0.02 0.6 7.2 -6.6 11.4 16 EB1914214055 Jupiter 145155 VSW02_C Siltstone 100%, Carb Claystone <1%																		4.6	Non Acid Forming (Barren)
14 EB1914214065 Jupiter 134770 VSW080_C Sandstone 100% Sandstone 1.00 2.94 1.94 7.46 187 0.02 0.6 7.2 -6.6 11.1 15 EB1914214055 Jupiter 145152 VSW022_C Shale 100% Siltstone 1.00 9.00 7.01 331 0.02 0.6 8.8 -8.2 14.4 16 EB1914214065 Jupiter 145155 VSW022_C Siltstone 100% Siltstone 3.01 43.21 10.20 8.78 14.5 0.04 1.2 6.6 -5.4 5.4 17 EB1914214063 Jupiter 134767 VSW078_C Siltstone 100% Siltstone 4.45 6.00 1.55 5.05 112 0.08 2.5 7.7 -5.3 3.1 18 EB1914214067 Jupiter 134872 VSW103_C Siltstone 100% Siltstone 2.00 5.00 3.00 7.92 2.66 0.005 0.2 7.8																		0.4	Non Acid Forming (Barren)
15 EB1914214055 Jupiter 145152 VSW022 C Shale 100% Siltstone 1.0 10.00 9.00 7.01 331 0.02 0.6 8.8 -8.2 14.4 16 EB1914214058 Jupiter 145155 VSW022 C Siltstone 100% Carb Claystone <1% Siltstone 33.01 43.21 10.20 8.78 145 0.04 1.2 6.6 -5.4 5.4 17 EB1914214063 Jupiter 134767 VSW078 C Siltstone 100% Siltstone 4.45 6.00 1.55 5.05 112 0.08 2.5 7.7 -5.3 3.1 18 EB1914214067 Jupiter 134872 VSW103 C Siltstone 100% Siltstone 2.00 5.00 3.00 7.92 266 0.005 0.2 7.8 -7.6 50.0 19 EB1914214068 Jupiter 134873 VSW103 C Siltstone 100% Siltstone 5.00 3.00 7.92 266 0.005 0.2 7.8																		12.0	Non Acid Forming (Barren)
16 EB1914214058 Jupiter 145155 VSW022_C Siltstone 100%, Carb Claystone <1% Siltstone 33.01 43.21 10.20 8.78 145 0.04 1.2 6.6 -5.4 5.4 17 EB1914214063 Jupiter 134767 VSW078_C Siltstone 100% Siltstone 4.45 6.00 1.55 5.05 112 0.08 2.5 7.7 -5.3 3.1 18 EB1914214067 Jupiter 134872 VSW103_C Siltstone 100% Siltstone 2.00 5.00 3.00 7.92 266 0.005 0.2 7.8 -7.6 50.0 19 EB1914214068 Jupiter 134873 VSW103_C Siltstone 100% Siltstone 5.00 3.00 9.01 152 0.02 0.6 15.4 -14.8 25.1 20 EB1914214069 Jupiter 134874 VSW103_C Siltstone 100% Siltstone 8.00 3.00 9.01 152 0.02 0.6 14.2 -13.6																		11.8	Non Acid Forming (Barren)
17 EB1914214063 Jupiter 134767 VSW078_C Siltstone 100% Siltstone 4.45 6.00 1.55 5.05 112 0.08 2.5 7.7 -5.3 3.1 18 EB1914214067 Jupiter 134872 VSW103 C Siltstone 100% Siltstone 2.00 5.00 3.00 7.92 266 0.005 0.2 7.8 -7.6 50.0 19 EB1914214068 Jupiter 134873 VSW103 C Siltstone 100% Siltstone 5.00 8.00 3.00 9.01 152 0.02 0.6 15.4 -14.8 25.7 20 EB1914214068 Jupiter 134874 VSW103_C Siltstone 100% Siltstone 8.00 3.00 9.01 152 0.02 0.6 14.2 -13.6 25.1 20 EB1914214068 Jupiter 134874 VSW103_C Siltstone 8.00 11.00 3.00 8.6 15.4 -14.6 25.1																		14.4	Non Acid Forming (Barren)
18 EB1914214067 Jupiter 134872 VSW103 C Siltstone 100% Siltstone 2.00 5.00 3.00 7.92 2.66 0.005 0.2 7.8 -7.6 50.0 19 EB1914214068 Jupiter 134873 VSW103 C Siltstone 100% Siltstone 5.00 3.00 9.01 152 0.02 0.6 15.4 -14.8 25. 20 EB1914214068 Jupiter 134874 VSW103 C Siltstone 100% Siltstone 8.00 13.00 3.00 9.01 152 0.02 0.6 15.4 -14.8 25. 20 EB1914214069 Jupiter 134874 VSW103_C Siltstone 100% Siltstone 8.00 13.00 3.00 8.6 15.4 -14.8 25.																		5.4	Non Acid Forming (Barren)
19 EB1914214068 Jupiter 134873 VSW103_C Siltstone 100% Siltstone 5.00 8.00 3.00 9.01 152 0.02 0.6 15.4 -14.8 25.7 20 EB1914214069 Jupiter 134874 VSW103_C Siltstone 100% Siltstone 8.00 11.00 3.00 8.86 154 0.02 0.6 14.2 -13.6 23.2																		3.1	Non Acid Forming (Barren)
20 EB1914214069 Jupiter 134874 VSW103_C Siltstone 100% Siltstone 8.00 11.00 3.00 8.86 154 0.02 0.6 14.2 -13.6 23.2																		50.9	Non Acid Forming (Barren)
																		25.1	Non Acid Forming (Barren)
														1				23.2	Non Acid Forming (Barren)
																		12.1	Non Acid Forming (Barren)
																		15.3	Non Acid Forming (Barren)
23 EB1914214061 Jupiter 134774 VSW077 C Carb Siltstone 100% Carbonaceous 3.00 4.00 1.00 6.27 65 0.03 0.9 5.7 -4.8 6.2 1. Current pH, EC, Alkalinity and Acidity provided for 1:5 sample:water extracts Carb Siltstone 100% Carbonaceous 3.00 4.00 1.00 6.27 65 0.03 0.9 5.7 -4.8 6.2						Carb Siltstone 100%	Carbonaceous	3.00	4.00	1.00	6.27	65	0.03	1	0.9	5.7	-4.8	6.2	Non Acid Forming (Barren)

Current pH, EC, Alkalinity and Acidity provided for 1:5 sample:water extracts
 Scr = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential.

3. Sample classification criteria detail provided in report text.

* Where total sulfur or ANC results are less than the laboratory LoR a value of half of the LoR is used in Table B2.

Table B3: Acid Base Account test results for coal reject samples

RGS Sample ID	ALS ID	Prospect	Drill Hole	Vulcan Sample ID	Sample Description	Reject Type	From (m		рН¹	EC ¹ (µS/cm)	Total S	Scr %)		ANC ²	NAPP ²	ANC: MPA Ratio	Sample Classification ³
1	EB1929251001	Vulcan	VSW069_C	IP19006604R005	Coarse (Wash 2, -50+2mm) reject	Coarse	-50	2	8.4	176	0.72	0.388	11.9	8.4	3.5	0.7	Uncertain
2	EB1929251003	Vulcan	VSW086_C	IP1900410R298	Coarse (Wash 2, -50+2mm) reject	Coarse	-50	2	8.0	401	0.28	0.047	1.4	1.8	-0.4	1.3	Non Acid Forming (Barren)
3	EB1932449003	Jupiter	VSW019_C	IP19002032R587	Coarse (Wash 2, -50+2mm) reject	Coarse	-50	2	4.5	454	0.31	0.049	1.5	10.9	-9.4	7.3	Non Acid Forming (Barren)
4	EB1932449005	Jupiter	VSW022_C	IP19003592R466	Coarse (Wash 2, -50+2mm) reject	Coarse	-50	2	7.6	213	0.20	0.055	1.7	22.8	-21.1	13.5	Non Acid Forming (Barren)
5	EB1932449001	Vulcan	VSW079_C	IP19004096R302	Coarse (Wash 2, -50+2mm) reject	Coarse	-50	2	8.3	116	0.82	0.569	17.4	11.3	6.1	0.6	Potentially Acid Forming
6	EB1929251004	Vulcan	VSW086_C	IP1900410R299	Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm) reject	Fine	-2	0.25	7.0	595	0.38	0.220	6.7	7.2	-0.5	1.1	Uncertain
7	EB1929251002	Vulcan	VSW069_C	IP19006604R006	Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm) reject	Fine	-2	0.25	7.3	484	0.41	0.190	5.8	8.5	-2.7	1.5	Uncertain
8	EB1932449007	Vulcan	VSW096_C	IP19004601R298	Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm) reject	Fine	-2	0.25	6.8	398	0.12	0.018	0.6	36.0	-35.4	65.3	Non Acid Forming (Barren)
9	EB1932449002	Vulcan	VSW079_C	IP19004096R303	Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm) reject	Fine	-2	0.25	7.4	564	0.60	0.382	11.7	13.5	-1.8	1.2	Uncertain
10	EB1932449004	Jupiter	VSW019_C	IP19002032R588	Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm) reject	Fine	-2	0.25	5.6	193	0.41	0.027	0.8	16.9	-16.1	20.4	Non Acid Forming (Barren)
11	EB1932449006	Jupiter	VSW022_C	IP19003592R467	Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm) reject	Fine	-2	0.25	7.6	466	0.22	0.152	4.7	23.3	-18.6	5.0	Non Acid Forming

Notes

1. Current pH, EC, Alkalinity and Acidity provided for 1:5 sample:water extracts

2. Scr = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; and NAPP = Net Acid Producing Potential

3. Sample classification criteria detail provided in report text.

		RGS Sample Number →		Composite 2	Composite 3	Composite 4	Composite 5	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
		ALS Laboratory ID →	EB1916203003		EB1916203005							
		Sample description \rightarrow										
Parameters	Limit of	NEPC ¹ Health-Based	Vulcan Soil	Vulcan Sandstone	Vulcan Clay	Vulcan Claystone	Jupiter Sandstone	Jupiter Siltstone	Vulcan Coarse Reject	Vulcan Fine Reject	Jupiter/Vulcan Coarse Reject	
	Reporting	Investigation Level (HILs)-C			-	-				-		-
Major Cations							All unit	s mg/kg				
Calcium (Ca)	50	-	5,710	2,420	9,470	1,890	370	460	2,650	2,090	1600	4780
Magnesium (Mg)	50	-	4,080	2,140	8,890	2,320	760	1,430	2,160	1,120	680	2700
Potassium (K)	50	-	270	680	290	950	1,180	2,200	500	720	1270	1280
Sodium (Na)	50	-	950	490	1,670	730	260	770	120	150	410	470
Major, Minor & Trace Elements							All unit	s mg/kg				
Aluminium (Al)	50	-	9,520	2,090	10,900	5,120	2,280	3,000	1,100	1,790	2770	3360
Antimony (Sb)	5	-	<5	<5	<5	<5	<5	<5	<5	<5	0.1	0.1
Arsenic (As)	5	300	<5	<5	<5	<5	<5	5	7	12	16	11
Barium (Ba)	10	-	150	50	170	80	70	50	80	230	313	256
Beryllium (Be)	1	90	<1	<1	<1	1	<1	2	<1	1	1	1
Boron (B)	50	20,000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium (Cd)	1	90	<1	<1	<1	<1	<1	<1	<1	<1	0.1	0.1
Chromium (Cr) - hexavalent	2	300 **	46	38	53	34	69	24	<2	<2	0.6	2.1
Cobalt (Co)	2	300	17	3	19	11	4	10	5	22	5	6
Copper (Cu)	5	17,000	7	6	11	13	8	27	23	44	55	46
Iron (Fe)	50	-	17,200	8,640	25,400	17,700	12,200	22,200	46,900	11,200	7,940	6,340
Lead (Pb)	5	600	6	6	<5	10	12	30	6	15	14	19
Manganese (Mn)	5	19,000	538	103	466	188	126	331	1,100	179	85	74
Mercury (Hg)	0.1	80	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.1	<0.1	0.1
Molybdenum (Mp)	2	2	<2	<2	<2	<2	<2	<2	1	3	1	1
Nickel (Ni)	2	1,200	24	6	34	18	10	18	6	23	7	12.9
Reactive Phosphorus (P)	0.1	-	<0.1	<0.1	0	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Selenium (Se)	5	700	<5	<5	<5	<5	<5	<5	<5	<5	2	2
Thallium (TI)	5	-	<5	<5	<5	<5	<5	6	<5	<5	<5	<5
Thorium (Th)	0.1	-	-	-	-	-	-	-	-	-	1.9	2.0
Uranium (U)	0.1		0.3	0.3	0.8	0.7	0.3	0.8	0.6	1.0	0.8	5.4
Zinc (Zn)	5	30,000	14	17	31	50	31	91	62	145	49	72
Exchangable Cations									Noisture Content	t (%))		
Exch. Calcium	0.1		6.2	0.9	3.0	1.0	0.8	0.9	-	-	-	-
Exch. Magnesium	0.1		9.1	3.1	12.3	3.4	1.9	5.3	-	-	-	-
Exch. Potassium	0.1		0.2	1.1	0.2	0.4	1.0	1.4	-	-	-	-
Exch. Sodium	0.1		1.9	0.7	3.0	0.7	0.9	2.5	-	-	-	-
Cation Exchange Capacity	0.1		17.4	5.8	18.6	5.6	4.8	10.2	-	-	-	-
Calcium:Magnesium Ratio	-		0.7	0.3	0.2	0.3	0.4	0.2	-	-	-	-
Magnesium:Potassium Ratio	-		37.6	2.7	60.5	8.8	1.8	3.8	-	-	-	-
Exchangable Sodium Percentage	0.1%		10.8	12.1	16.3	13.0	20.4	24.6	-	-	-	-
Moisture content	1.0%		4.0	<1.0	4.8	1.6	<1.0	<1.0	-	-	-	-

Table B4: Multi-element test results for waste rock and coal reject samples

Notes: < indicates less than the laboratory limit of reporting. Shaded cells exceed applied guideline limit.

** Guideline level for Cr(VI) = 300 mg/kg. Guideline level for Cr(III) = 24% of total Cr.

1. NEPC (2013). National Environmental Protection Council (NEPC). National Environmental Protection (Assessment of Site Contamination) Measure (NEPM), Amendment of Schedule B1-B7 of 1999 version. Guideline on Investigation Levels for Soil and Groundwater. Health-Based Investigation Level - HIL(C); public open spaces - recreational use.

	PCS Some	ple Number \rightarrow	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5			Composite 8	Composite 9	Composite 10
		-										
		aboratory ID →	EB1916203003	EB1916203004	EB1916203005	EB1916203006	EB1916203007	EB1916203008	EB1931850005	EB1931850006	EB1933850008	EB1933850009
Parameters	Sample Limit of Reporting	description → Average Crustal Abundance ¹	Vulcan Soil	Vulcan Sandstone	Vulcan Clay	Vulcan Claystone	Jupiter Sandstone	Jupiter Siltstone	Vulcan Coarse Reject	Vulcan Fine Reject	Jupiter/Vulcan Coarse Reject	Jupiter/Vulcan Fine Reject
Major Elements	all uni	its mg/kg					Geochemical A	bundance Index				
Calcium (Ca)	50	15,000	0	0	0	0	0	0	0	0	0	0
Magnesium (Mg)	50	5,000	0	0	0	0	0	0	0	0	0	0
Potassium (K)	50	14,000	0	0	0	0	0	0	0	0	0	0
Sodium (Na)	50	5,000	0	0	0	0	0	0	0	0	0	0
Major, Minor & Trace Elements	all uni	its mg/kg					Geochemical A	bundance Index				
Aluminium (Al)	50	71,000	0	0	0	0	0	0	0	0	0	0
Antimony (Sb)	5	5	0	0	0	0	0	0	0	0	0	0
Arsenic (As)	5	6	0	0	0	0	0	0	0	0	1	0
Barium (Ba)	10	500	0	0	0	0	0	0	0	0	0	0
Beryllium (Be)	1	6	0	0	0	0	0	0	0	0	0	0
Boron (B)	50	100	0	0	0	0	0	0	0	0	0	0
Cadmium (Cd)	1	0.35	0	0	0	0	0	0	0	0	0	0
Chromium (Cr) - hexavalent	2	70	0	0	0	0	0	0	0	0	0	0
Cobalt (Co)	2	8	1	0	1	0	0	0	0	1	0	0
Copper (Cu)	5	30	0	0	0	0	0	0	0	0	0	0
Iron (Fe)	50	40,000	0	0	0	0	0	0	0	0	0	0
Lead (Pb)	5	35	0	0	0	0	0	0	0	0	0	0
Manganese (Mn)	5	1000	0	0	0	0	0	0	0	0	0	0
Mercury (Hg)	0.1	0.06	0	0	0	0	0	0	0	0	0	0
Molybdenum (Mo)	2	2	0	0	0	0	0	0	0	0	0	0
Nickel (Ni)	2	50	0	0	0	0	0	0	0	0	0	0
Reactive Phosphorus (P)		800	0	0	0	0	0	0	0	0	0	0
Selenium (Se)	5	0.4	2	2	2	2	2	2	2	2	2	2
Thallium (TI)	5	2.5	0	0	0	0	0	1	0	0	0	0
Thorium (Th)	0.1	9	-	-	-	-	-	-	-	-	0	0
Uranium (U)	0.1	2	0	0	0	0	0	0	0	0	0	1
Zinc (Zn)	5	90	0	0	0	0	0	0	0	0	0	0

Notes: GAI's greater than or equal to 3 are highlighted.

1. Average Crustal Abundance values sourced from the "GARD Guide", Chapter 5 (INAP, 2009). When no GARD Guide value is available for a particular element, then values are taken from Bowen H.J.M.(1979) Environmental Chemistry of the Elements, pages 60-61.

lable	B6: Multi-ele						-	-					
			nple Number \rightarrow	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
		ALS L	.aboratory ID \rightarrow	EB1916203003	EB1916203004	EB1916203005	EB1916203006	EB1916203007	EB1916203008	EB1931850005	EB1931850006	EB1933850008	EB1933850009
		Sampl	e description \rightarrow										
		Water Quality	y Guidelines:	Vulcan	Vulcan	Vulcan	Vulcan	Jupiter	Jupiter	Vulcan	Vulcan Fine	Jupiter/Vulcan	Jupiter/Vulcan
	Limit of	Aquatic	Livestock	Soil	Sandstone	Clay	Claystone	Sandstone	Siltstone	Coarse Reject	Reject	Coarse Reject	Fine Reject
Parameters	Reporting	Ecosystems	Drinking							···· · · · , · · ·	.,	· · · · · · · · · , · · ·	· · · , · · ·
		(freshwater) ¹	Water ²										
pH	0.01 pH unit	6 to 9	-	8.2	8.6	8.5	8.2	6.8	7.1	8.6	7.4	5.8	6.2
Electrical Conductivity	1 µS/cm	<1,000 [#]	3,580^	552	346	788	490	167	264	86	154	96	54
Carbonate Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	1,768	564	2,980	546	35	144	24	33	56	1,032
Total Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	1,768	564	2,980	546	35	144	24	33	56	1,032
Acidity (mgCaCO ₃ /L)	1 mg/L	-	-	2	<1	<1	3	8	5	19	48	46	178
Net Alkalinity (mgCaCO ₃ /L)	1 mg/L	-	-	1,766	564	2,980	543	27	139	6	33	56	854
Major Ions		All units mg/L						All unit	0				
Calcium (Ca)	2	-	1,000	12	2	4	4	<2	<2	<2	4	<2	2
Magnesium (Mg)	2	-	-	12	6	10	8	<2	<2	<2	4	<2	4
Potassium (K)	2	-	-	<2	6	<2	8	12	8	<2	<2	<2	4
Sodium (Na)	2	-	-	92	54	146	84	26	52	26	26	24	24
Chloride (CI)	2	-	-	60	48	140	82	18	36	8	24	10	26
Fluoride (F)	0.2	-	2	0.8	0.4	1.8	0.8	<0.2	0.2	<0.2	1.0	0.2	0.4
Sulfate (SO ₄)	2	-	1,000	30	28	46	44	30	24	18	32	24	20
Trace Metals/Metalloids		All units mg/L						All unit	*				
Aluminium (Al)	0.02	0.055	5	<0.02	0.06	0.04	0.04	0.36	0.48	0.14	<0.02	<0.02	<0.02
Antimony (Sb)	0.002	-	-	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	0.004	<0.002
Arsenic (As) - pentavalent	0.002	0.013 **	0.5	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002
Barium (Ba)	0.002	-	-	0.028	0.012	0.016	0.008	0.004	0.002	<0.002	0.002	<0.002	0.004
Beryllium (Be)	0.002	-	-	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002
Boron (B)	0.2												
Cadmium (Cd)	0.2	0.37	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Charamaiuma (Ca) tat-1	0.002	0.37 0.0002	5 0.01	<0.2 <0.002	<0.2 <0.002	<0.2 <0.002	<0.2 <0.002	<0.2 <0.002	<0.2 <0.002	<0.2 <0.002	<0.2 <0.002		<0.2 <0.002
Chromium (Cr) - total				-			-			-		<0.2	-
Chromium (Cr) - total Cobalt (Co)	0.002	0.0002	0.01	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.2 <0.002	<0.002
	0.002	0.0002 0.001 (hex)*	0.01 1 (total)	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.2 <0.002 <0.002	<0.002 <0.002
Cobalt (Co)	0.002 0.002 0.002	0.0002 0.001 (hex)* -	0.01 1 (total) 1	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.2 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002
Cobalt (Co) Copper (Cu)	0.002 0.002 0.002 0.002	0.0002 0.001 (hex)* -	0.01 1 (total) 1	<0.002 <0.002 <0.002 0.006	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 0.002	<0.002 <0.002 <0.002 0.004	<0.2 <0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002
Cobalt (Co) Copper (Cu) Iron (Fe)	0.002 0.002 0.002 0.002 0.2	0.0002 0.001 (hex)* - 0.0014 -	0.01 1 (total) 1 1 -	<0.002 <0.002 <0.002 0.006 <0.2	<0.002 <0.002 <0.002 <0.002 <0.2	<0.002 <0.002 <0.002 <0.002 <0.2	<0.002 <0.002 <0.002 <0.002 <0.2	<0.002 <0.002 <0.002 <0.002 <0.2	<0.002 <0.002 <0.002 <0.002 <0.2	<0.002 <0.002 <0.002 0.002 <0.2	<0.002 <0.002 <0.002 0.004 <0.2	<0.2 <0.002 <0.002 <0.002 <0.002 <0.2	<0.002 <0.002 <0.002 <0.002 <0.2
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb)	0.002 0.002 0.002 0.002 0.2 0.002	0.0002 0.001 (hex)* - 0.0014 - 0.0034	0.01 1 (total) 1 - 0.1	<0.002 <0.002 <0.002 0.006 <0.2 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.2 <0	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002	<0.002 <0.002 <0.002 0.002 <0.2 <0.002	<0.002 <0.002 <0.002 0.004 <0.2 <0.002	<0.2 <0.002 <0.002 <0.002 <0.002 <0.2 <0.	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn)	0.002 0.002 0.002 0.002 0.2 0.002 0.002	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90	0.01 1 (total) 1 - 0.1 -	<0.002 <0.002 <0.002 0.006 <0.2 <0.002 0.008	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 0.004	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 0.004	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 0.004	<0.2 <0.002 <0.002 <0.002 <0.002 <0.2 <0.	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg)	0.002 0.002 0.002 0.002 0.2 0.002 0.002 0.002 0.0001	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90	0.01 1 (total) 1 - 0.1 - 0.002	<0.002 <0.002 <0.002 0.006 <0.2 <0.002 0.008 <0.0001	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.002 <0.0001	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.002 <0.0001	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.0002 <0.0001	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 0.004 <0.0001	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 0.004 <0.0001	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.002 <0.0001	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 0.004 <0.004	<0.2 <0.002 <0.002 <0.002 <0.002 <0.2 <0.	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.002 <0.0001
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo)	0.002 0.002 0.002 0.002 0.2 0.002 0.002 0.0001 0.0001	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90 0.0006 -	0.01 1 (total) 1 - 0.1 - 0.002 0.15	<0.002 <0.002 <0.002 0.006 <0.2 <0.002 0.008 <0.0001 0.002	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.004	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.002	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.004	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 0.004 <0.0001 <0.0001	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 0.004 <0.0001 0.006	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.034	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 0.004 <0.0001 0.020	<0.2 <0.002 <0.002 <0.002 <0.002 <0.2 <0.	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.0001 0.002
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni)	0.002 0.002 0.002 0.002 0.02 0.002 0.002 0.0001 0.0001 0.002 0.002	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90 0.0006 - 0.011	0.01 1 (total) 1 - 0.1 - 0.002 0.15 1	<0.002 <0.002 <0.002 0.006 <0.2 <0.002 0.008 <0.0001 0.002 0.006	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.004 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.0002 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0002 <0.0001 0.004 <0.002	<0.002 <0.002 <0.002 <0.02 <0.2 <0.002 <0.002 0.004 <0.0001 <0.0001 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.004 <0.0001 0.006 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 <0.034 0.002	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 0.004 <0.0001 0.020 <0.002	<0.2 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0002 <0.0001 0.008 <0.002	<0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.002 <0.0001 0.002 <0.002
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Selenium (Se)	0.002 0.002 0.002 0.2 0.002 0.002 0.002 0.0001 0.0002 0.002 0.002 0.002	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90 0.0006 - 0.011	0.01 1 (total) 1 - 0.1 - 0.002 0.15 1 0.02	<0.002 <0.002 <0.002 0.006 <0.2 <0.002 0.008 <0.0001 0.002 0.006 <0.02	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.004 <0.002 <0.002 <0.02	<0.002 <0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.0001 0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.004 <0.002 <0.002 <0.02	<0.002 <0.002 <0.002 <0.02 <0.02 <0.02 <0.002 0.004 <0.0001 <0.002 <0.002 <0.002 <0.02	<0.002 <0.002 <0.002 <0.02 <0.02 <0.02 <0.002 0.004 <0.0001 0.006 <0.002 <0.02	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.034 0.002 <0.02	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 0.004 <0.0001 0.020 <0.002 <0.002 <0.02	<0.2 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0002 <0.0001 0.008 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.002 <0.0001 0.002 <0.002 <0.002 <0.002
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Selenium (Se) Silica (SiO ₂)	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0001 0.002 0.002 0.002 0.002 0.002 0.02	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90 0.0006 - 0.011	0.01 1 (total) 1 - 0.1 - 0.002 0.15 1 0.02	<0.002 <0.002 <0.002 0.006 <0.2 <0.002 0.008 <0.0001 0.002 0.006 <0.02 10.2	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.0002 <0.0001 0.004 <0.002 <0.002 <0.002 9.0	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0001 0.0002 <0.0002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.02 <0.002 <0.0002 <0.0001 0.004 <0.002 <0.002 <0.002 <0.002 10.0	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.000 <0.0001 <0.0002 <0.002 <0.002 <0.002 <0.02 12.8	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.006 <0.002 <0.002 <0.02 14.4	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.0002 <0.0001 0.034 0.002 <0.02 <0.02 <0.02	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 <0.004 <0.0001 0.020 <0.020 <0.02 <0.02 <0.02	<0.2	<0.002 <0.002 <0.002 <0.2 <0.002 <0.002 <0.0002 <0.0001 0.002 <0.002 <0.002 <0.002 8.6
Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Selenium (Se) Silica (SiO ₂) Thorium (Th)	0.002 0.002 0.002 0.2 0.002 0.002 0.002 0.0001 0.002 0.002 0.002 0.002 0.02 0.	0.0002 0.001 (hex)* - 0.0014 - 0.0034 1.90 0.0006 - 0.011 0.011 - - -	0.01 1 (total) 1 - 0.1 - 0.002 0.15 1 0.02 - - -	<0.002 <0.002 <0.002 <0.006 <0.2 <0.002 0.008 <0.0001 0.002 0.006 <0.02 10.2 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.004 <0.002 <0.002 9.0 <0.002	<0.002 <0.002 <0.002 <0.002 <0.02 <0.002 <0.0002 <0.0001 0.002 <0.002 <0.002 <0.002 10.4 <0.002	<0.002 <0.002 <0.002 <0.002 <0.02 <0.002 <0.0002 <0.0001 0.004 <0.002 <0.002 <0.002 10.0 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.000 <0.0001 <0.0002 <0.002 <0.002 <0.002 12.8 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.004 <0.0001 0.006 <0.002 <0.002 <0.02 14.4 <0.002	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.034 0.002 <0.02 <0.02 <0.02 <0.2 <0.02	<0.002 <0.002 <0.002 0.004 <0.2 <0.002 <0.004 <0.0001 0.020 <0.002 <0.002 <0.02 <0.02 <0.02 <0.02	<0.2	<0.002 <0.002 <0.002 <0.02 <0.02 <0.002 <0.002 <0.0001 0.002 <0.002 <0.002 8.6 <0.002

Table B6: Multi-element test results for water extracts from waste rock and coal reject samples

* Cr (VI) = hexavalent. ** 0.024 mg/Lfor trivalent Arsenic (III).

Notes: < indicates concentration less than the detection limit. Shaded cells exceed applied guideline values.

for still water bodies only, moving rivers at low flow rates should not exceed 2,200 $\mu\text{S/cm}$

1. ANZG (2018). Trigger values for aquatic ecosystems (95% species protection level)

C. TDS is an 2. ANZG (2018. Recommended guideline limits for Livestock Drinking Water.

^ calculated based on total dissolved solids (TDS) conversion rate of 0.67% of EC. TDS is an approximate measure of inorganic dissolved salts and should not exceed 2,400mg/L for livestock drinking water.

Table B7: Waste rock and coal reject samples selected for KLC tests

RGS		D		Daille i in	Occurred a 1991 - 1	From	То	Interval	RGS KLC
Sample ID	ALS ID	Deposit	Vitronite Sample ID	Drillhole ID	Sample Lithology		(m)		No.
9	EB1914213009	Vulcan	145304	VSW070 C	Sandstone 100%	7.00	16.00	9.00	
10	EB1914213010	Vulcan	145305 - 145306	VSW070 C	Sandstone 100%	16.00	23.00	7.00	
11	EB1914213011	Vulcan	145307	VSW070_C	Sandstone 100%	23.00	25.00	2.00	
15	EB1914213015	Vulcan	145311	VSW070_C	Sandstone 100%	27.99	32.00	4.01	
16	EB1914213016	Vulcan	145312	VSW070_C	Sandstone 100%	32.00	37.00	5.00	
17	EB1914213017	Vulcan	145313	VSW070_C	Sandstone 100%	37.00	41.00	4.00	
21	EB1914213021	Vulcan	134784	VSW082_C	Sandstone 100%	5.00	16.00	11.00	
25	EB1914213025	Vulcan	134788	VSW082_C	Sandstone 100%	20.00	26.08	6.08	
28	EB1914213028	Vulcan	134791	VSW083_C	Sandstone 100%	4.00 20.00	20.00	16.00	
29 31	EB1914213029 EB1914213031	Vulcan Vulcan	134792 134794	VSW083_C VSW083_C	Sandstone 100% Sandstone 100%	20.00	21.77 24.00	2.03	-
33	EB1914213033	Vulcan	134796	VSW083_C	Sandstone 100%	25.00	30.86	5.86	
41	EB1914213041	Vulcan	163124 - 163125	VSW085_C	Sandstone 100%	19.00	26.00	7.00	-
43	EB1914213043	Vulcan	163127 - 163128	VSW084_C	Sandstone 100%	27.00	37.00	10.00	
44	EB1914213044	Vulcan	163129 - 163131	VSW084 C	Sandstone 100%	37.00	42.84	5.84	
56	EB1914213056	Vulcan	163004	VSW087_C	Sandstone 100%	4.00	9.00	5.00	
57	EB1914213057	Vulcan	163005 - 163006	VSW087_C	Sandstone 100%	9.00	13.00	4.00	
58	EB1914213058	Vulcan	163007 - 163009	VSW087_C	Sandstone 100%	13.00	18.00	5.00	
59	EB1914213059	Vulcan	163010	VSW087_C	Sandstone 100%	18.00	21.00	3.00	KLC1
60	EB1914213060	Vulcan	163011	VSW087_C	Sandstone 100%	21.00	24.02	3.02	
66	EB1914213066	Vulcan	163018 - 163019	VSW088_C	Sandstone 100%	12.00	18.00	6.00	
67	EB1914213067	Vulcan	163020 - 163022	VSW088_C	Sandstone 100%	18.00	23.00	5.00	4
68 94	EB1914213068 EB1914214024	Vulcan	163023	VSW088_C	Sandstone 100%	23.00 9.00	29.00 12.00	6.00	4
94 95	EB1914214024 EB1914214025	Vulcan Vulcan	163042 - 163043 163044	VSW095_C VSW095_C	Sandstone 100% Sandstone 100%	9.00	12.00	3.00 2.00	1
95 97	EB1914214025 EB1914214027	Vulcan	163044 163047	VSW095_C VSW095_C	Sandstone 100% Sandstone 100%	12.00	14.00	3.00	1
98	EB1914214027 EB1914214028	Vulcan	163048 - 163050	VSW095_C	Sandstone 100%	18.00	24.00	6.00	1
99	EB1914214028	Vulcan	163201	VSW095_C	Sandstone 100%	24.00	25.00	1.00	1
103	EB1914214033	Vulcan	163253 - 163254	VSW099_C	Sandstone 100%	3.00	7.00	4.00	1
104	EB1914214034	Vulcan	163255 - 163256	VSW099_C	Sandstone 100%	7.00	14.00	7.00	
105	EB1914214035	Vulcan	163257 - 163258	VSW099_C	Sandstone 100%	14.00	19.00	5.00	
106	EB1914214036	Vulcan	163259 - 163260	VSW099_C	Sandstone 100%	19.00	22.80	3.80	
111	EB1914214041	Vulcan	163236	VSW104_C	Sandstone 100%	4.00	7.00	3.00	
112	EB1914214042	Vulcan	163237	VSW104_C	Sandstone 100%	7.00	14.00	7.00	
113	EB1914214043	Vulcan	163238 - 163240	VSW104_C	Sandstone 100%	14.00	20.00	6.00	
115	EB1914214045	Vulcan	163242	VSW104_C	Sandstone 100%	21.00	28.00	7.00	
116	EB1914214046	Vulcan	163243	VSW104_C	Sandstone 100%	28.00	30.00	2.00	
12 13	EB1914213012 EB1914213013	Vulcan Vulcan	145308 145309	VSW070_C VSW070_C	Claystone 100% Carbonaceous Sandstone 100%	25.00 26.00	26.00 27.53	1.00 1.53	
13	EB1914213013	Vulcan	145310	VSW070_C	Weathered Coal 100%	20.00	27.99	0.46	-
22	EB1914213014	Vulcan	134785	VSW082_C	Claystone 100%	16.00	17.70	1.70	
23	EB1914213023	Vulcan	134786	VSW082_C	Weathered Coal 25%, Siltstone 75%	17.70	18.70	1.00	-
30	EB1914213030	Vulcan	134793	VSW083_C	Weathered Coal 100%	21.77	21.97	0.20	
42	EB1914213042	Vulcan	163126	VSW084 C	Claystone 100%	26.00	27.00	1.00	
45	EB1914213045	Vulcan	163132	VSW084_C	Carbonaceous Claystone 38%, Carbonaceous Sandstone 62%	42.84	43.74	0.90	
62	EB1914213062	Vulcan	163013	VSW087_C	Carbonaceous Siltstone 100%	24.88	28.95	4.07	
80	EB1914214010	Vulcan	134820	VSW090_C	Claystone 100%	19.00	20.00	1.00	
81	EB1914214011	Vulcan	134821	VSW090_C	Claystone 98%, Carbonaceous Claystone 2%	20.00	26.00	6.00	KLC2
82	EB1914214012	Vulcan	134822	VSW090_C	Claystone 100%	26.00	27.00	1.00	
83	EB1914214013	Vulcan	134823	VSW090_C	Claystone 100%	27.00	30.85	3.85	
88	EB1914214018	Vulcan Vulcan	134837	VSW092_C	Clay 99%, Weathered Coal 1%	13.00	17.69	4.69	4
89 90	EB1914214019 EB1914214020		134838 134839	VSW092_C	Claystone 35%, Weathered Coal 51%, Carbonaceous Claystone 14% Claystone 100%	17.69 21.00	21.00 23.20	3.31 2.20	-
90 96	EB1914214020 EB1914214026	Vulcan Vulcan	163045	VSW092_C VSW095_C	Claystone 100%	14.00	15.00	2.20	1
100	EB1914214020	Vulcan	163202	VSW095_C	Claystone 100%	25.00	25.84	0.84	1
100	EB1914214037	Vulcan	163261	VSW099 C	Claystone 89%, Carbonaceous Claystone 11%	22.80	24.00	1.20	1
108	EB1914214038	Vulcan	163262	VSW099_C	Carbonaceous Sandstone 100%	24.00	29.60	5.60	1
114	EB1914214044	Vulcan	163241	VSW104_C	Sandstone 80%, Carbonaceous Siltstone 20%	20.00	21.00	1.00	1
118	EB1914214048	Jupiter	335481	VSW017_C	Sandstone 100%	1.00	3.00	2.00	
119	EB1914214049	Jupiter	335482	VSW017_C	Sandstone 100%	3.00	6.00	3.00]
120	EB1914214050	Jupiter	335483	VSW017_C	Sandstone 100%	6.00	7.59	1.59]
123	EB1914214053	Jupiter	335479	VSW019_C	Sandstone 100%	14.26	24.86	10.60	KLC3
127	EB1914214057	Jupiter	145154	VSW022_C	Sandstone 100%, Carbonaceous Claystone <1%	20.00	33.01	13.01	ILC3
130	EB1914214060	Jupiter	134773	VSW077_C	Sandstone 100%	1.00	3.00	2.00	4
132	EB1914214062	Jupiter	134764	VSW078_C	Sand 16%, Sandstone 84%	0.00	3.17	3.17	4
135	EB1914214065	Jupiter	134770	VSW080_C	Sandstone 100%	1.00	2.94	1.94	
122	EB1914214052	Jupiter	335478	VSW019_C	Coaly Shale 100%	3.00	7.53	4.53	4
125 126	EB1914214055 EB1914214056	Jupiter Jupiter	145152 145153	VSW022_C VSW022_C	Shale 100% Carbonaceous Siltstone 100%	1.00	10.00 12.02	9.00 2.02	-
126	EB1914214056 EB1914214058	Jupiter	145155	VSW022_C VSW022_C	Siltstone 100%, Carbonaceous Claystone <1%	33.01	43.21	10.20	1
131	EB1914214058 EB1914214061	Jupiter	134774	VSW022_C VSW077_C	Carbonaceous Siltstone 100%	3.00	43.21	1.00	KLC4
133	EB1914214061	Jupiter	134767	VSW077_C	Siltstone 100%	4.45	6.00	1.55	1104
137	EB1914214003	Jupiter	134872	VSW103_C	Siltstone 100%	2.00	5.00	3.00	1
138	EB1914214068	Jupiter	134873	VSW103 C	Siltstone 100%	5.00	8.00	3.00	1
139	EB1914214069	Jupiter	134874	VSW103_C	Siltstone 100%	8.00	11.00	3.00	1
140	IP19006604 R006	Vulcan	134725_28 + 162507_09	VSW069_C	Fine Rejects	1		1	KIO -
141	IP19004101 R299	Vulcan	145437-442 to 145447-448	VSW086_C	Fine Rejects	1		1	KLC 5
142	IP19006604 R005	Vulcan	134725_28 + 162507_09	VSW069_C	Coarse Rejects				KIOO
143	IP19004101 R298	Vulcan	145437-442 to 145447-448	VSW086_C	Coarse Rejects				KLC 6

Notes
1. Current pH, EC, Alkalinity and Acidity provided for 1:5 sample:water extracts
2. CRS = Chromium Reducible Sulfur; MPA = Maximum Potential Acidity; ANC = Acid Neutralising Capacity; NAPP = Net Acid Producing Potential; and NAG = Net Acid Generation
3. Sample classification criteria detail provided in report text.
* Where total sulfur or ANC results are less than the laboratory LoR a value of half of the LoR is used in Table B5.

Attachment C Kinetic Geochemical Test Results

Vulcan Sandstone KLC 1

						KLC 1			
		Weight (kg)	2.00	Total S (%)	0.02	ANC	15.1		
		pH (1:5)	8.79	Scr (%)	0.020	NAPP	-14.6		
	-	EC (µS/cm)	283	MPA	0.6	ANC:MPA	26.5		
Date			25-Jun-19	22-Jul-19	27-Aug-19	25-Sep-19	22-Oct-19	26-Nov-19	24-Dec-19
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laboratory Number			EB1916412001	EB1918957001	EB1922363001	EB1925267001	EB1927981001	EB1931659001	EB1934601001
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.609	0.580	0.512	0.454	0.467	0.375	0.281
Cum. Volume (L)			0.61	1.19	1.70	2.15	2.62	3.00	3.28
Pore Volumes			0.5	0.9	1.3	1.6	1.9	2.2	2.4
pH (RGS Measurement)			8.21	6.74	6.91	7.77	7.75	8.06	7.66
pH (ALS Measurement)			6.87	7.02	7.25	7.45	7.15	7.85	8.03
pH (deionised water used in t	test)		5.45	5.46	6.01	5.89	5.67	5.87	5.95
EC (RGS Measurement) (µS/c			54	150	268	848	1,156	1,796	442
EC (ALS Measurement) (µS/c			56	171	282	930	1,150	1750	462
Acidity (mg/L)*	,		1	1	1	7	2	5	<1
Alkalinity (mg/L)*			7	5	8	26	25	47	80
Net Alkalinity (mg/L)*			6	4	7	19	23	42	80
·····, (-		·				
Major lons (mg/L)	LoR	WQ Guidelines#							
Calcium (Ca)	1	1,000	0.5	2	3	7	12	16	3
Potassium (K)	1	-	<1	<1	<1	1	<1	2	1
Magnesium (Mg)	1		0.5	5	7	22	38	49	8
Sodium (Na)	1	-	12	22	44	146	142	258	91
Chloride (Cl)	1		10	33	52	222	318	456	64
Fluoride (F)	0.1	2	<0.1	<0.1	0.1	0.5	0.3	0.7	0.9
Sulfate (SO ₄)	1	1,000	3	20	39	107	95	186	47
Trace metals/ metalloids (mg/L		1,000	. · ·	20	00	101		100	
Aluminium (Al)	0.01	5	1.09	0.22	0.13	0.01	< 0.01	< 0.01	0.77
Arsenic (As)	0.001	0.5	<0.001	< 0.001	<0.001	0.002	0.001	0.006	0.004
Boron (B)	0.05	5	<0.05	< 0.05	< 0.05	0.06	<0.05	0.09	0.14
Cadmium (Cd)	0.0001	0.01	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001
Cobalt (Co)	0.001	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Chromium (Cr)	0.001	1	< 0.001	< 0.001	< 0.001	< 0.001	0.021	< 0.001	0.001
Copper (Cu)	0.001	1	< 0.001	0.001	< 0.001	< 0.001	0.002	0.002	0.005
Iron (Fe)	0.05	1	0.21	< 0.05	< 0.05	< 0.05	0.16	< 0.05	0.10
Manganese (Mn)	0.001	2	0.002	0.02	0.005	0.009	0.024	0.035	0.003
Molybdenum (Mo)	0.001	0.15	< 0.001	< 0.001	0.001	0.008	0.005	0.012	0.013
Nickel (Ni)	0.001	1	< 0.001	< 0.001	< 0.001	0.001	0.002	0.002	0.001
Lead (Pb)	0.001	0.1	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Antimony (Sb)	0.001	-	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001
Selenium (Se)	0.01	0.02	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01
Vanadium (V)	0.01	-	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
Zinc (Zn)	0.005	20	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
				· · · · · · · · · · · · · · · · · · ·				·	·
Calculations**									
SO₄ Release Rate			1	6	10	24	22	35	7
Cumulative SO₄ Release			1	7	17	41	63	98	105
Ca Release Rate			0.2	0.6	0.8	1.6	2.8	3.0	0.4
Cumulative Ca Release			0.2	0.7	1.5	3.1	5.9	8.9	9.3
Mg Release Rate			0.2	1.5	1.8	5.0	8.9	9.2	1.1
Cumulative Mg Release			0.2	1.6	3.4	8.4	17.3	26.4	27.6
Residual ANC (%)			100.0	99.9	99.9	99.7	99.4	99.2	99.1
Residual Sulfur (%)			99.8	98.8	97.0	92.7	88.7	82.5	81.3
SO₄/(Ca+Mg) molar ratio			0.9	0.8	1.1	1.0	0.5	0.8	1.2
				than the analytica		* Acidity and alka			

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush.
 Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

Vulcan Claystone KLC 2

		Weight (kg)	2.00 Total S (%) 0.03		ANC	13.4]		
		рН (1:5)	8.42	Scr (%)	0.030	NAPP	-12.4		
		EC (µS/cm)	352	MPA	1.0	ANC:MPA	13.3		
Date			25-Jun-19	22-Jul-19	27-Aug-19	25-Sep-19	22-Oct-19	26-Nov-19	24-Dec-19
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laboratory Number			EB1916412002	EB1918957002	EB1922363002	EB1925267002	EB1927981002	EB1931659002	'EB1934601002
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.562	0.489	0.360	0.575	0.829	0.536	0.687
Cum. Volume (L)			0.56	1.05	1.41	1.99	2.82	3.35	4.04
Pore Volumes			0.4	0.8	1.0	1.5	2.1	2.5	3.0
pH (RGS Measurement)			7.48	6.79	6.95	7.69	7.61	7.96	8.27
pH (ALS Measurement)			6.71	6.86	6.94	6.99	6.85	7.17	7.00
pH (deionised water used in te			5.45	5.46	6.01	5.89	5.67	5.87	7.39
EC (RGS Measurement) (µS/cn	,		69	259	395	219	152	122	89
EC (ALS Measurement) (μS/cm	1)		76	299	414	251	150	119	94
Acidity (mg/L)*			1	2	1	8	<1	<1	2
Alkalinity (mg/L)*			6	4	8	7-1	8	6	11
Net Alkalinity (mg/L)*			5	2	7	-1	8	6	9
Major lons (mg/L)	LoR	WQ Guidelines [#]							
Calcium (Ca)	1	1,000	0.5	3	7	2	2	2	0.5
Potassium (K)	1	-	<1	<1	1	<1	<1	<1	<1
Magnesium (Mg)	1	-	0.5	9	13	6	4	3	2
Sodium (Na)	1	-	15	39	57	36	18	15	15
Chloride (CI)	1	-	13	63	68	44	23	18	13
Fluoride (F)	0.1	2	0.1	0.1	0.2	0.2	0.1	0.1	0.1
Sulfate (SO ₄)	1	1,000	6	34	71	37	22	18	12
Trace metals/ metalloids (mg/L)	LoR								
Aluminium (Al)	0.01	5	1.07	0.05	0.04	0.26	0.22	0.22	0.29
Arsenic (As)	0.001	0.5	<0.001	<0.001	<0.001	<0.001	0.002	0.004	<0.001
Boron (B)	0.05	5	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Cobalt (Co)	0.001	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Chromium (Cr)	0.001	1	<0.001 <0.001	< 0.001	<0.001 <0.001	<0.001 <0.001	0.004	< 0.001	<0.001 <0.001
Copper (Cu) Iron (Fe)	0.001	1	0.40	<0.001 <0.05	<0.001	0.13	<0.001 0.14	<0.001 0.09	0.09
Manganese (Mn)	0.001	2	0.40	0.008	0.004	0.003	0.003	0.002	0.003
Molybdenum (Mo)	0.001	0.15	<0.001	<0.008	0.004	0.003	<0.003	0.002	<0.003
Nickel (Ni)	0.001	1	<0.001	<0.001	0.001	< 0.002	<0.001	<0.001	<0.001
Lead (Pb)	0.001	0.1	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium (V)	0.01	-	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Calculations**									
SO ₄ Release Rate			2	8	13	11	9	5	4
Cumulative SO ₄ Release			2	10	23	33	43	47	51
Ca Release Rate			0.1	0.7	1.3	0.6	0.8	0.5	0.2
Cumulative Ca Release			0.1	0.9	2.1	2.7	3.5	4.1	4.2
Mg Release Rate			0.1	2.2	2.3	1.7	1.7	0.8	0.7
Cumulative Mg Release			0.1	2.3	4.7	6.4	8.1	8.9	9.6
Residual ANC (%)			100.0	99.9	99.8	99.8	99.7	99.7	99.6
Residual Sulfur (%)			99.8	99.0	97.7	96.6	95.7	95.2	94.8
SO ₄ /(Ca+Mg) molar ratio			1.9	0.8	1.0	1.3	1.1	1.1	1.3
						* Acidity and alka	alinity data calcul	ated in mg CaCO	/L.
			** SO, Ca and M	la release rates c	alculated in mg/kg	a/fluch			

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush.
 Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.
 MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

Jupiter Sandstone
KLC 3

	_					KLC 3			
		Weight (kg)	1.95	Total S (%)	0.05	ANC	5.1		
		pH (1:5)	7.13	Scr (%)	0.050	NAPP	-3.7		
		EC (µS/cm)	142	MPA	1.4	ANC:MPA	3.7		
Date			25-Jun-19	22-Jul-19	27-Aug-19	26-Sep-19	22-Oct-19	26-Nov-19	24-Dec-19
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laboratory Number			EB1916412003	EB1918957003	EB1922363003	EB1925267003	EB1927981003	EB1931659003	EB1934601003
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.578	0.662	0.613	0.576	0.586	0.549	0.624
Cum. Volume (L)			0.58	1.24	1.85	2.43	3.01	3.56	4.19
Pore Volumes			0.4	0.9	1.4	1.8	2.2	2.6	3.1
pH (RGS Measurement)			5.55	6.10	5.81	6.51	6.41	6.73	7.14
pH (ALS Measurement)			5.84	6.18	6.03	5.98	6.11	6.35	6.35
pH (deionised water used in t	est)		5.45	5.46	6.01	5.89	5.67	5.87	5.95
EC (RGS Measurement) (µS/ci	n) ́		558	128	174	255	210	184	141
EC (ALS Measurement) (µS/cr			616	144	181	300	208	181	148
Acidity (mg/L)*			2	1	2	7	2	1	1
Alkalinity (mg/L)*			2	1	2	5	5	5	5
Net Alkalinity (mg/L)*			0	0	0	-2	3	4	4
, ,				1				1	1
Major lons (mg/L)	LoR	WQ Guidelines#							
Calcium (Ca)	1	1,000	4	0.5	2	2	2	2	1
Potassium (K)	1	-	6	1	2	2	2	2	2
Magnesium (Mg)	1	-	7	2	3	4	3	2	2
Sodium (Na)	1	-	104	23	30	49	31	27	24
Chloride (Cl)	1	-	108	25	21	37	21	15	10
Fluoride (F)	0.1	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Sulfate (SO₄)	1	1.000	111	22	40	73	51	47	41
Trace metals/ metalloids (mg/L)	LoR			1				1	1
Aluminium (Al)	0.01	5	0.08	0.15	0.09	0.06	0.24	0.2	0.28
Arsenic (As)	0.001	0.5	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.003	< 0.001
Boron (B)	0.05	5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cadmium (Cd)	0.0001	0.01	0.0002	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001
Cobalt (Co)	0.001	1	0.039	0.007	0.006	0.008	0.004	0.002	0.001
Chromium (Cr)	0.001	1	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
Copper (Cu)	0.001	1	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iron (Fe)	0.05	1	<0.05	0.07	<0.05	0.05	<0.05	0.08	0.09
Manganese (Mn)	0.001	2	0.153	0.101	0.134	0.229	0.121	0.098	0.058
Molybdenum (Mo)	0.001	0.15	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel (Ni)	0.001	1	0.045	0.009	0.008	0.01	0.004	0.003	0.002
Lead (Pb)	0.001	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Antimony (Sb)	0.001	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium (Se)	0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium (V)	0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc (Zn)	0.005	20	0.158	0.022	0.023	0.031	0.014	0.008	0.005
Calculations**			20	7	10	20	45	10	10
SO ₄ Release Rate			33	7	13	22	15	13	13
Cumulative SO₄ Release Ca Release Rate			33	40	53	75	90	103	116
			1.2	0.2	0.6	0.6	0.6	0.6	0.3
Cumulative Ca Release			1.2	1.4	2.0	2.6	3.2	3.7	4.1
Mg Release Rate			2.1	0.7	0.9	1.2	0.9	0.6	0.6
Cumulative Mg Release			2.1	2.8	3.7	4.9	5.8	6.3	7.0
Residual ANC (%)			99.8	99.7	99.6	99.5	99.4	99.3	99.3
Residual Sulfur (%)			97.6	97.0	96.1	94.5	93.3	92.4	91.4
SO₄/(Ca+Mg) molar ratio			3.0	2.4	2.4	3.5 * Acidity and alk	3.1	3.7	4.0

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush.
 Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

Jupiter Siltstone KLC 4

Potassium (K) 1 - 6 3 2 3 2 3 3 Magnesium (Mg) 1 - 4 7 5 4 3 4 2 Sodium (Na) 1 - 150 89 71 75 51 70 71 Chloride (Cl) 1 - 193 130 74 76 48 67 56 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.14 0.17 0.68 0.73 0.91 1.13 Arsenc (As) 0.001 0.05							KLC 4				
			Weight (kg)	2.02	Total S (%)	0.03	ANC	9.6]		
Date Description 22-Jul-19 22-Jul-19 22-Aug-19 22-Sep-19 22-Oct-19 24-Oct-30 Leach Number 1 2 3 4 1 6 7 AlS. Laboratory Number E161964204 E191580704 E1912520706 E191			pH (1:5)	7.58	Scr (%)	0.030	NAPP	-8.7			
Number of Weeks i	r		EC (µS/cm)	198	MPA	0.9	ANC:MPA	10.7			
Number of Wieks i i i j<	Date			25-Jun-19	22-Jul-19	27-Aug-19	25-Sep-19	22-Oct-19	26-Nov-19	24-Dec-19	
ALS Laboratory Number Effitie Effitie<	Number of Weeks			0	4		13	17	22	26	
Volume Off (1) 10	Leach Number			1	2	3	4	5	6	7	
Volume Off (i) 0.570 0.570 0.570 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.581 0.581 0.582 0.582 0.582 0.581 0.581 0.571 0.552 0.563 0.586 0.566 0.576 0.582 0.575 0.552 0.563 0.567 557 555 557 557 382 431 310 409 364 Acidity (mgL)* 5 6 2 3 2 1 3 3 5 Calcular (Scalum) Calcular (MgL)* 5 6 2 3 2 1 3 3 5 Calcular (Gal) 1 0.00 0.5 <t< th=""><th>ALS Laboratory Number</th><th></th><th></th><th>EB1916412004</th><th>EB1918957004</th><th>EB1922363004</th><th>EB1925267004</th><th>EB1927981004</th><th>EB1931659004</th><th>EB1934601004</th></t<>	ALS Laboratory Number			EB1916412004	EB1918957004	EB1922363004	EB1925267004	EB1927981004	EB1931659004	EB1934601004	
Cum. Volume (L) 0.57 11.3 1.76 2.36 2.95 3.52 4.23 Ph (RS Measurement) 6.62 6.59 0.36 6.88 6.67 6.88 6.99 PH (AS Measurement) 6.62 6.51 6.41 6.45 6.43 6.62 6.77 5.87 5.95 EC (RS Measurement) (pS/cm) 5.45 5.46 6.01 5.89 5.67 5.87 5.95 EC (RS Measurement) (pS/cm) 720 557 382 431 310 409 384 Acidity (mg/L)* 5 6 2 3 2 1 3 Akainty (mg/L)* 0 -4 1 2 3 5 5 4 8 Major tons (mg/L) LOR WO Guidelines* 3 2 3 3 3 Solium (R) 1 - 6 3 2 3 2 3 3 Solium (R) 1 - 4				1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Pore Volumes 0.4 0.6 1.3 1.7 2.2 2.6 3.1 pH (GLS Measurement) 6.62 6.59 6.36 6.86 6.67 6.88 6.92 6.70 pH (delonised water used in test) 5.45 5.64 6.01 5.89 5.67 5.87 5.95 EC (RS Measurement) (pScm) 649 490 384 304 414 371 EC (ALS Measurement) (pScm) 5 6 2 3 5 5 4 8 Acidity (mgL)* 5 6 2 3 5 5 4 8 Rollalinity (mgL)* 5 6 2 3 5 5 4 8 Calcium (G3) 1 1.000 0.5 <td< th=""><th>Volume Off (L)</th><th></th><th></th><th>0.570</th><th>0.557</th><th>0.636</th><th>0.594</th><th>0.591</th><th>0.576</th><th>0.708</th></td<>	Volume Off (L)			0.570	0.557	0.636	0.594	0.591	0.576	0.708	
pH (6.58 Measurement) 6.62 6.59 6.64 6.64 6.67 6.88 6.99 pH (debinised water used in test) 5.45 5.46 6.01 5.89 5.67 5.87 5.95 EC (ROS Measurement) (pSCm) 720 557 382 431 310 409 384 Acidity (mgL)* 5 6 2 3 2 1 3. Akalinity (mgL)* 5 2 3 5 5 4 8 Major tons (mgL) LoR WO Gudesines* - - - - - - - - 5 2 3 5 5 4 8 Major tons (mgL) LoR WO Gudesines* - - - - - - 5 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 4	Cum. Volume (L)			0.57	1.13	1.76	2.36	2.95	3.52	4.23	
pH (Als) Mean 64.5 6.51 6.41 6.45 6.43 6.62 6.70 pH (doins dware used in test) 5.45 5.64 6.01 5.89 5.67 5.87 5.95 EC (RS Measurement) (uS/cm) 720 657 3.82 431 310 400 384 Acidity (mg/L)* 5 6 2 3 5 5 4 8 Net Alkalinity (mg/L)* 0 -4 1 2 3 3 5 Magnetium (Mg) 1 0.000 5 0.5 0.5 0.5 0.5 Polassium (K) 1 1.000 4 7 5 4 3 4 2 Solum (K) 1 - 150 89 71 75 51 70 71 Solum (M) 1 - 150 89 71 75 51 70 71 Fluoride (F) 0.1 2 0.2 0.1	Pore Volumes			0.4	0.8	1.3	1.7	2.2	2.6	3.1	
pH (denoised water used in test) 5.45 5.46 6.01 5.89 5.67 5.87 5.95 EC (RSS Masurement) (µS/cm) 720 557 382 431 310 400 334 EC (ALS Masurement) (µS/cm) 5 6 2 3 2 1 3 Akalinty (mg/)* 5 2 3 5 5 4 8 Net Akalinity (mg/L)* 0 -4 1 2 3 3 5 Major lons (mg/L) LOR WG Guidement* -	pH (RGS Measurement)			6.62	6.59	6.36	6.86	6.67	6.88	6.96	
ÉC (RS Massurement) (uS(cm) 649 490 388 334 304 414 371 EC (ALS Massurement) (uS(cm) 5 6 2 3 2 1 3 Akialinity (mg/L)* 5 6 2 3 2 1 3 Makalinity (mg/L)* 0 -4 1 2 3 5 5 Major Ions (mg/L) LoR WG Guidalinse* 0 -4 1 2 3 3 5 Magnesium (K) 1 1.000 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Polassium (K) 1 - 4 7 5 4 3 4 2 Solum (K) 1 - 150 89 71 75 51 70 71 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.	pH (ALS Measurement)			6.45	6.51	6.41	6.45	6.43	6.62	6.70	
EC (ALS Measurement) (µSCm) 720 55 68 2 3 2 1 3 Alkalinty (mg/L)* 5 6 2 3 5 5 4 8 Net Alkalinty (mg/L)* 0 -4 1 2 3 3 5 Magnesium (M) 1 1.000 0.5											
Acleinty (mg/L)* 5 6 2 3 2 1 3 Net Alkalinity (mg/L)* 5 2 3 5 5 4 8 Major lons (mg/L) LoR W0 Guidatines* 0 -4 1 2 3 3 5 Major lons (mg/L) LoR W0 Guidatines* - - 0 -4 1 2 3 3 5 Calcium (Ga) 1 0 6 3 2 3 3 4 2 3 3 Magnesium (Mg) 1 - 150 80 71 75 51 70 71 Choride (Cl) 1 - 193 130 74 76 48 67 56 Suffate (SO ₄) 1 1.000 45 57 48 74 53 78 72 Aluminium (A) 0.01 5 0.05 <0.05 <0.061 <0.001 0.001 0.	EC (RGS Measurement) (μS/cr	m)		649	490	368	384	304	414	371	
Alkalinity (mg/L)* 5 2 3 5 5 4 8 Net Alkalinity (mg/L)* 0 -4 1 2 3 3 5 Major lons (mg/L) LOR WQ Guidesines* 3 5 5 0.5 1		n)							409		
Net Akaining (mg/L)* 0 -4 1 2 3 3 5 Major lons (mg/L) LoR wa Guadames* Catclum (Ca) 1 0.000 0.5 0.5 0.5 0.5 0.5 0.5 Magnesium (Mg) 1 - 6 3 2 3 4 2 Sodium (Na) 1 - 4 7 5 4 3 4 2 Sodium (Na) 1 - 150 89 71 75 51 70 71 75 Choride (Cl) 1 1 0.01 2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.1 Startice metals/ metalloids (mg/L) LoR 0.1 2.0 0.1 0.2 0.1 1.3 Arsen (As) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001									1		
Major Ions (mg/L) LoR wq Guddelmes* Catclum (Ga) 1 1.000 0.5 0.5 0.5 0.5 0.5 0.5 Potassium (K) 1 - 6 3 2 3 3 Magnesium (Mg) 1 - 6 3 2 3 3 Sodium (Na) 1 - 150 89 71 75 51 70 71 Choirde (C) 1 - 193 130 74 76 48 67 56 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.14 0.07 0.68 0.73 0.91 1.13 Aresnic (As) 0.001 0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.06 <0.001 <0.0001 <0.001 <0.001 </th <th></th>											
Catcium (Ca) 1 1,000 0.5 0.5 0.5 0.5 0.5 0.5 Potassium (K) 1 - 6 3 2 3 2 3 3 Magnesium (Mg) 1 - 4 7 5 4 3 4 2 Solium (Na) 1 - 150 89 71 75 51 70 71 Solium (Na) 1 - 150 89 71 75 51 70 71 Solium (Na) 1 - 150 89 71 75 51 70 71 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 <th0.2< th=""> <th0.1< <="" th=""><th>Net Alkalinity (mg/L)*</th><th></th><th></th><th>0</th><th>-4</th><th>1</th><th>2</th><th>3</th><th>3</th><th>5</th></th0.1<></th0.2<>	Net Alkalinity (mg/L)*			0	-4	1	2	3	3	5	
Catcium (Ca) 1 1,000 0.5 0.5 0.5 0.5 0.5 0.5 Potassium (K) 1 - 6 3 2 3 2 3 3 Magnesium (Mg) 1 - 4 7 5 4 3 4 2 Solium (Na) 1 - 150 89 71 75 51 70 71 Solium (Na) 1 - 150 89 71 75 51 70 71 Solium (Na) 1 - 150 89 71 75 51 70 71 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 <th0.2< th=""> <th0.1< <="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th0.1<></th0.2<>											
Potassium (K) 1 - 6 3 2 3 2 3 3 Bagnesium (Mg) 1 - 44 7 5 4 3 4 2 Sodium (Mg) 1 - 150 89 71 75 51 70 71 Chorde (C) 1 - 193 100 74 76 446 67 56 Function (F) 0.1 2.0.2 0.1 0.1 0.2 0.2 Sufate (SO_) 1 1.000 45 57 48 74 53 78 72 Atsenic (As) 0.001 5 0.24 0.14 0.17 0.68 0.73 0.91 1.13 Assenic (As) 0.001 5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.061 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <t< th=""><th>Major lons (mg/L)</th><th>LoR</th><th>WQ Guidelines#</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Major lons (mg/L)	LoR	WQ Guidelines#								
Magnesium (Mg) 1 · 4 7 5 4 3 4 2 Sodum (Na) 1 · 150 89 71 75 51 70 71 Chorlde (C) 1 · 193 130 74 76 48 67 56 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.0 0.00 0.00 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 <th>Calcium (Ca)</th> <th>1</th> <th>1,000</th> <th>0.5</th> <th>0.5</th> <th>0.5</th> <th>0.5</th> <th>0.5</th> <th>0.5</th> <th>0.5</th>	Calcium (Ca)	1	1,000	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Sodium (Na) 1 - 150 89 71 75 51 70 71 Chiorde (C) 1 - 193 130 74 76 48 67 56 Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 1 1.0 0.00 40.001 <0.001 <0.001 0.001 0.001 0.001 40.001 <0.001 <0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	Potassium (K)		-						3		
Chloride (Ci) 1 - 193 130 74 76 48 67 56 Sulfate (SO_) 1 2 0.2 0.1 0.1 0.2 0.1 Sulfate (SO_) 1 1.000 45 57 48 74 53 78 72 Trace metals/ metalloids (mg/L) LoR	Magnesium (Mg)	1	-	4	7			3	4	2	
Fluoride (F) 0.1 2 0.2 0.1 0.1 0.2 0.1 1.13 Atsminum (A) 0.01 5 0.001	Sodium (Na)	1	-	150	89	71	75	51	70	71	
Suifate (SO ₄) 1 1,000 45 57 48 74 53 78 72 Trace metals/ metalloids (mg/L) LOR	Chloride (CI)	1	-	193	130	74	76	48	67	56	
Trace metals/ metalloids (mg/L) LoR	Fluoride (F)	0.1	2	0.2	0.1	0.1	0.2	0.1	0.2	0.2	
Aluminium (A) 0.01 5 0.24 0.14 0.77 0.68 0.73 0.91 1.13 Arsenic (As) 0.001 0.5 <	Sulfate (SO ₄)	1	1,000	45	57	48	74	53	78	72	
Arsenic (As) 0.001 0.5 <0.001	Trace metals/ metalloids (mg/L)	LoR									
Boron (B) 0.05 5 <0.05	Aluminium (Al)	0.01	5	0.24	0.14	0.17	0.68	0.73	0.91	1.13	
Cadmiun (Cd) 0.001 0.01 <0.0001	Arsenic (As)	0.001	0.5	< 0.001	< 0.001	<0.001	<0.001	<0.001	0.003	0.002	
Cobalt (Co) 0.001 1 0.003 0.002 0.002 0.002 0.002 0.002 0.001	Boron (B)	0.05	5		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Chromium (Cr) 0.001 1 <0.001	Cadmium (Cd)		0.01								
Copper (Cu) 0.001 1 0.001 <0.001	Cobalt (Co)	0.001		0.003	0.002	0.002	0.002	0.002	0.002	0.001	
Iron (Fe) 0.05 1 0.14 0.11 0.07 0.20 <0.05	Chromium (Cr)		1	< 0.001	<0.001		<0.001	<0.001	< 0.001		
Marganese (Mn) 0.001 2 0.041 0.045 0.042 0.048 0.034 0.04 0.033 Molybdenum (Mo) 0.001 0.15 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Copper (Cu)	0.001		0.001	<0.001						
Molybdenum (Mo) 0.001 0.15 <0.001	Iron (Fe)										
Nickel (Ni) 0.001 1 0.003 0.002 0.002 0.003 0.003 0.002 0.003 Lead (Pb) 0.001 0.1 0.001 0.001 - <0.001 0.001 0.002 0.003 0.002 0.003 Antimony (Sb) 0.001 - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01<		0.001	2	0.041	0.045	0.042	0.048	0.034	0.04	0.033	
Lead (Pb) 0.001 0.1 0.001 0.001 <0.001											
Antimony (Sb) 0.001 - <0.001	Nickel (Ni)										
Selenium (Se) 0.01 0.02 <0.01	Lead (Pb)										
Vanadium (V) 0.01 - <0.01	Antimony (Sb)										
Zinc (Zn) 0.005 20 0.01 <0.005			0.02								
Calculations** SO ₄ Release Rate 12.7 15.8 15.2 21.8 16 22 25 Cumulative SO ₄ Release 12.7 28.5 43.6 65.4 81 103 129 Ca Release Rate 0.1 <th colspa<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th>										
SO ₄ Release Rate 12.7 15.8 15.2 21.8 16 22 25 Cumulative SO ₄ Release 12.7 28.5 43.6 65.4 81 103 129 Ca Release Rate 0.1 0.1 0.2 0.1 0.1 0.1 0.2 Cumulative Ca Release 0.1 0.1 0.2 0.1 0.1 0.1 0.2 Mg Release Rate 0.1 1.3 0.4 0.6 0.7 0.9 1.1 Cumulative Mg Release 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 99.9 99.9 99.8 99.7 99.6	Zinc (Zn)	0.005	20	0.01	<0.005	0.137	<0.005	<0.005	0.008	0.005	
SO ₄ Release Rate 12.7 15.8 15.2 21.8 16 22 25 Cumulative SO ₄ Release 12.7 28.5 43.6 65.4 81 103 129 Ca Release Rate 0.1 0.1 0.2 0.1 0.1 0.1 0.2 Cumulative Ca Release 0.1 0.1 0.2 0.1 0.1 0.1 0.2 Mg Release Rate 0.1 1.3 0.4 0.6 0.7 0.9 1.1 Cumulative Mg Release 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 99.9 99.9 99.8 99.7 99.6											
Cumulative SO ₄ Release 12.7 28.5 43.6 65.4 81 103 129 Ca Release Rate 0.1 0.1 0.2 0.1 0.1 0.1 0.2 Cumulative Ca Release 0.1 0.1 0.2 0.1 0.1 0.1 0.2 Cumulative Ca Release 0.1 0.3 0.4 0.6 0.7 0.9 1.1 Mg Release Rate 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 1.1 3.1 4.6 5.8 6.7 7.8 8.5 Residual ANC (%) 99.9 99.9 99.8 99.7 99.7 99.6 99.6 Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 SO ₄ /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9				46.7	45.0	45.0	04.0	10	<u> </u>	65	
Ca Release Rate 0.1 0.1 0.2 0.1 0.1 0.2 Cumulative Ca Release 0.1 0.3 0.4 0.6 0.7 0.9 1.1 Mg Release Rate 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 1.1 3.1 4.6 5.8 6.7 7.8 8.5 Residual ANC (%) 99.9 99.9 99.8 99.7 99.6 99.6 Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 So _d /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9	-						-				
Cumulative Ca Release 0.1 0.3 0.4 0.6 0.7 0.9 1.1 Mg Release Rate 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 1.1 3.1 4.6 5.8 6.7 7.8 8.5 Residual ANC (%) 99.9 99.9 99.8 99.7 99.6 99.6 Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 SO ₄ /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9											
Mg Release Rate 1.1 1.9 1.6 1.2 0.9 1.1 0.7 Cumulative Mg Release 1.1 3.1 4.6 5.8 6.7 7.8 8.5 Residual ANC (%) 99.9 99.9 99.8 99.7 99.7 99.6 99.6 Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 So ₄ /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9											
Cumulative Mg Release 1.1 3.1 4.6 5.8 6.7 7.8 8.5 Residual ANC (%) 99.9 99.9 99.8 99.7 99.7 99.6 99.6 Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 SO _d /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9											
Residual ANC (%) 99.9 99.9 99.8 99.7 99.7 99.6 99.6 Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 SO _d /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9											
Residual Sulfur (%) 98.6 96.8 95.1 92.6 90.8 88.3 85.4 SO _d /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9											
SO ₄ /(Ca+Mg) molar ratio 2.6 2.0 2.3 4.4 4.1 4.6 7.9											
	SO ₄ /(Ca+Mg) molar ratio										

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush.
 Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

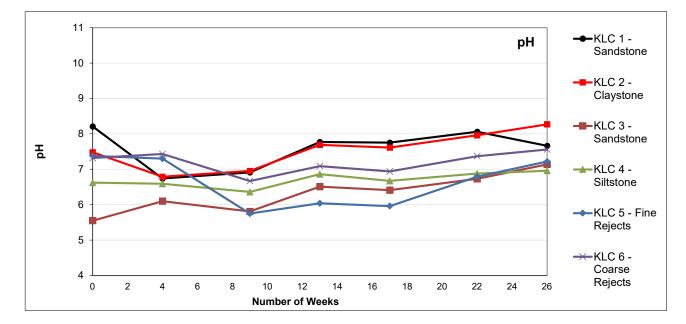
MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

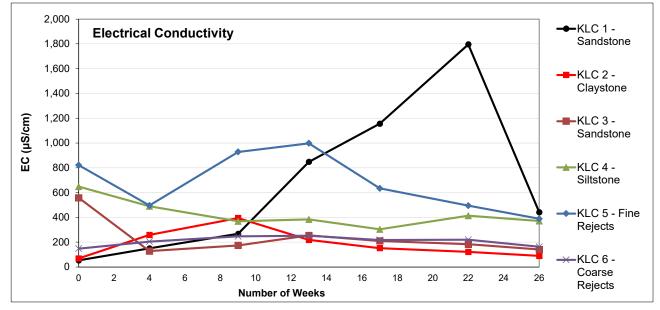
Vulcan Fine Rejects KLC 5

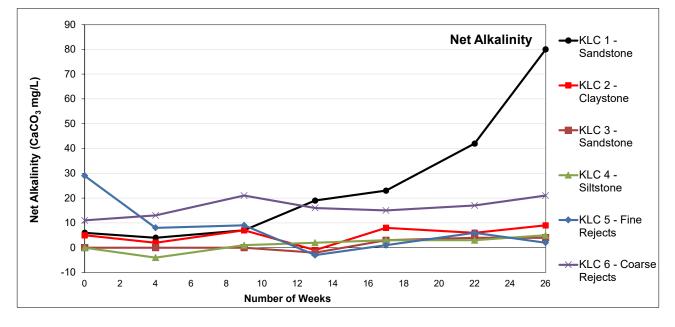
						KLC 5			
		Weight (kg)	1.38	Total S (%)	0.50	ANC	5.1		
		pH (1:5)	8.20	Scr (%)	0.218	NAPP	1.6		
		EC (µS/cm)	289	MPA	6.7	ANC:MPA	0.8		
Date			03-Dec-19	07-Jan-20	04-Feb-20	04-Mar-20	04-Apr-20	04-May-20	04-Jun-20
Number of Weeks			0	4	9	13	17	22	26
Leach Number			1	2	3	4	5	6	7
ALS Laboratory Number			EB1932471005	EB2000205001	EB2002875001	EB2005904001	EB2009682001	EB2011988001	EB2014636001
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Volume Off (L)			0.530	0.551	0.596	0.505	0.633	0.539	0.534
Cum. Volume (L)			0.53	1.08	1.68	2.18	2.82	3.35	3.89
Pore Volumes			0.4	0.8	1.2	1.6	2.1	2.5	2.9
pH (RGS Measurement)			7.38	7.30	5.75	6.04	5.96	6.79	7.22
pH (ALS Measurement)			7.35	6.69	5.77	5.59	6.03	6.58	6.48
pH (deionised water used in	test)		6.38	6.43	5.20	5.71	6.43	6.35	6.75
EC (RGS Measurement) (µS/c	cm)		822	496	928	998	634	495	389
EC (ALS Measurement) (µS/c	:m)		833	504	980	1,060	660	504	426
Acidity (mg/L)*			3	1	5	6	5	2	2
Alkalinity (mg/L)*			32	9	14	3	6	8	4
Net Alkalinity (mg/L)*			29	8	9	-3	1	6	2
Major lons (mg/L)	LoR	WQ Guidelines#							
Calcium (Ca)	1	1,000	35	22	50	64	31	26	21
Potassium (K)	1	-	5	5	8	8	6	5	4
Magnesium (Mg)	1	-	31	18	42	54	30	28	21
Sodium (Na)	1	-	70	45	73	86	51	39	26
Chloride (CI)	1	-	158	40	56	36	17	8	6
Fluoride (F)	0.1	2	1.2	0.6	0.5	0.4	0.5	0.4	0.4
Sulfate (SO ₄)	1	1,000	150	143	374	487	291	215	180
Trace metals/ metalloids (mg/L	_) LoR			•					
Aluminium (Al)	0.01	5	0.02	<0.01	0.04	0.01	0.05	<0.01	<0.01
Arsenic (As)	0.001	0.5	0.002	<0.001	0.001	0.001	<0.001	< 0.001	<0.001
Boron (B)	0.05	5	0.11	0.09	0.16	0.18	0.15	0.06	0.08
Cadmium (Cd)	0.0001	0.01	0.0021	0.0015	0.0068	0.0088	0.0064	0.0058	0.0052
Cobalt (Co)	0.001	1	0.07	0.099	0.423	0.552	0.346	0.320	0.262
Chromium (Cr)	0.001	1	0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
Copper (Cu)	0.001	1	0.006	0.006	0.020	0.025	0.029	0.018	0.016
Iron (Fe)	0.05	1	<0.05	<0.05	0.10	<0.05	0.07	<0.05	<0.05
Manganese (Mn)	0.001	2	0.016	0.023	0.108	0.198	0.195	0.202	0.174
Molybdenum (Mo)	0.001	0.15	0.05	0.013	0.010	0.007	0.006	0.005	0.002
Nickel (Ni)	0.001	1	0.046	0.072	0.271	0.352	0.233	0.221	0.184
Lead (Pb)	0.001	0.1	<0.001	<0.001	0.020	< 0.001	< 0.001	< 0.001	<0.001
Antimony (Sb)	0.001	-	0.002	0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Selenium (Se)	0.01	0.02	0.05	0.02	0.05	0.05	0.04	0.03	0.02
Vanadium (V)	0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc (Zn)	0.005	20	0.067	0.098	0.554	0.971	0.777	0.862	0.796
Coloulationatt									
Calculations** SO₄ Release Rate			57.7	57.2	161.9	178.6	133.8	84.2	69.8
Cumulative SO₄ Release			-					-	
Cumulative SO ₄ Release			57.7 13.5	115.0 8.8	276.8 21.6	455.4 23.5	589.2	673.4 10.2	743.2 8.1
Ca Release Rate			13.5	8.8	43.9		14.3 81.6	10.2 91.8	8.1
						67.4			
Mg Release Rate			11.9 11.9	7.2	18.2 37.3	19.8 57.1	13.8 70.9	11.0 81.9	8.1 90.0
Cumulative Mg Release			11.9 98.4	19.1					
Residual ANC (%) Residual Sulfur (%)				97.4	94.9	92.2	90.5	89.1	88.1
SO ₄ /(Ca+Mg) molar ratio			99.6 0.7	99.2 1.2	98.2 1.3	97.0 1.3	96.1 1.5	95.5 1.2	95.0 1.4

indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush.
 Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.

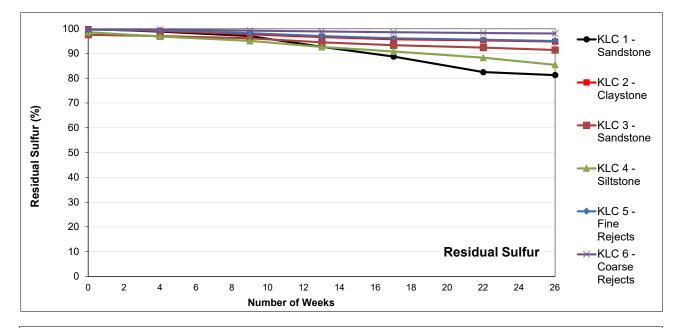
MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

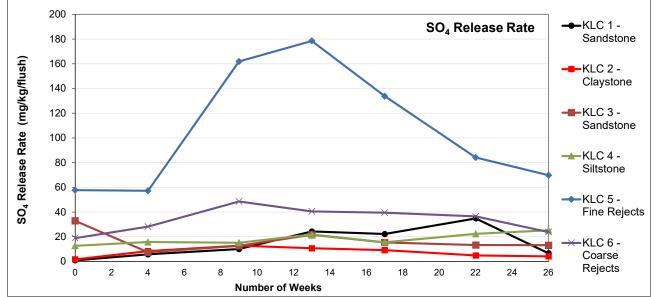


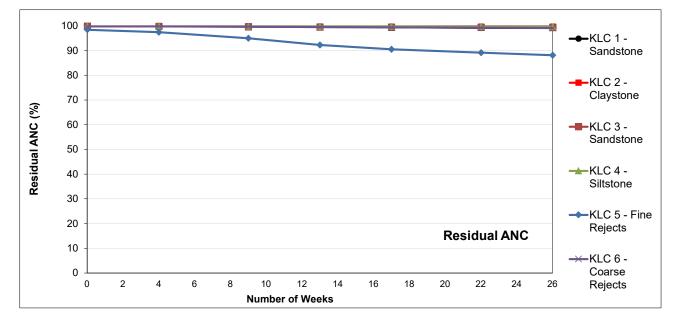

Vulcan Coarse Rejects KLC 6

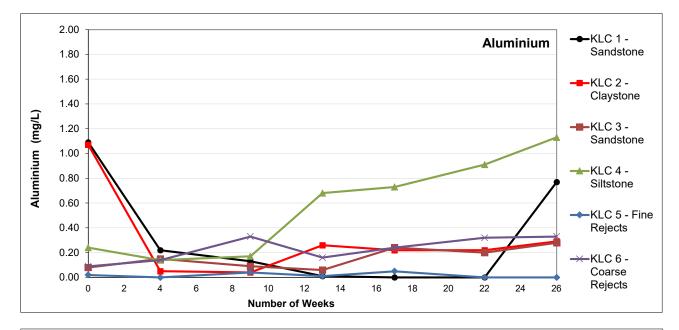

						KLC 6				
]	Weight (kg)	1.28	Total S (%)	0.40	ANC	7.8	1		
		pH (1:5)	7.15	Scr (%)	0.205	NAPP	-1.5			
	·	EC (µS/cm)	540	MPA	6.3	ANC:MPA	1.2			
Date			03-Dec-19	07-Jan-20	04-Feb-20	04-Mar-20	04-Apr-20	04-May-20	04-Jun-20	
Number of Weeks			0	4	9	13	17	22	26	
Leach Number			1	2	3	4	5	6	7	
ALS Laboratory Number			EB1932471006	EB2000205002	EB2002875002	EB2005904002	EB2009682002	EB2011988002	EB2014636002	
Volume On (L)			1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Volume Off (L)			0.755	0.690	0.794	0.680	0.654	0.673	0.633	
Cum. Volume (L)			0.76	1.45	2.24	2.92	3.57	4.25	4.88	
Pore Volumes			0.6	1.1	1.7	2.2	2.7	3.2	3.6	
pH (RGS Measurement)			7.32	7.43	6.67	7.09	6.94	7.37	7.56	
pH (ALS Measurement)			7.01	6.90	6.66	6.68	6.98	7.15	7.28	
pH (deionised water used in t	test)		6.38	6.43	5.20	5.71	6.43	6.35	6.75	
EC (RGS Measurement) (µS/c			148	205	247	252	218	220	163	
EC (ALS Measurement) (µS/ci			151	205	263	275	225	215	173	
Acidity (mg/L)*	,		1	1	200	2	2	<1	<1	
Alkalinity (mg/L)*			12	14	23	18	17	17	21	
Net Alkalinity (mg/L)*			11	13	20	16	15	17	21	
,, (,g,,										
Major lons (mg/L)	LoR	WQ Guidelines#								
Calcium (Ca)	1	1.000	2	2	2	3	2	2	2	
Potassium (K)	1	-	1	2	2	2	2	2	2	
Magnesium (Mg)	1	-	2	2	4	4	3	4	3	
Sodium (Na)	1	-	23	33	4	4	36	39	27	
Chloride (Cl)	1		19	14	13	11	8	6	4	
Fluoride (F)	0.1	2	0.4	0.5	0.9	0.6	0.8	0.7	0.6	
Sulfate (SO ₄)	1	1,000	32	52	78	76	77	69	48	
Trace metals/ metalloids (mg/L		1,000	52	52	10	10	11	05	40	
Aluminium (Al)	0.01	5	0.09	0.14	0.33	0.16	0.24	0.32	0.33	
Arsenic (As)	0.001	0.5	0.002	0.002	0.002	0.001	<0.001	0.001	0.002	
Boron (B)	0.05	5	<0.05	<0.05	0.13	0.18	0.06	< 0.05	0.05	
Cadmium (Cd)	0.0001	0.01	<0.0001	0.0002	0.0003	0.0004	0.0004	0.0004	0.0004	
Cobalt (Co)	0.001	1	0.006	0.016	0.023	0.021	0.020	0.019	0.016	
Chromium (Cr)	0.001	1	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	
Copper (Cu)	0.001	1	0.002	0.003	0.005	0.006	0.009	0.005	0.007	
Iron (Fe)	0.05	1	< 0.05	0.07	0.15	0.06	<0.05	< 0.05	< 0.05	
Manganese (Mn)	0.001	2	0.002	0.004	0.004	0.006	0.010	0.007	0.007	
Molybdenum (Mo)	0.001	0.15	0.036	0.046	0.052	0.058	0.035	0.054	0.027	
Nickel (Ni)	0.001	1	0.005	0.015	0.023	0.024	0.020	0.018	0.014	
Lead (Pb)	0.001	0.1	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	
Antimony (Sb)	0.001	-	<0.001	0.001	0.002	0.001	0.002	0.002	0.002	
Selenium (Se)	0.01	0.02	0.02	0.03	0.04	0.04	0.03	0.03	0.02	
Vanadium (V)	0.01	-	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Zinc (Zn)	0.005	20	< 0.005	0.009	0.016	0.026	0.036	0.040	0.038	
				·				·		
Calculations**										
SO ₄ Release Rate			18.9	28.1	48.6	40.5	39.5	36.4	23.8	
Cumulative SO ₄ Release			18.9	47.1	95.7	136.2	175.7	212.1	235.9	
Ca Release Rate			1.2	1.1	1.2	1.6	1.0	1.1	1.0	
Cumulative Ca Release			1.2	2.3	3.5	5.1	6.1	7.2	8.2	
Mg Release Rate			1.2	1.1	2.5	2.1	1.5	2.1	1.5	
Cumulative Mg Release			1.2	2.3	4.8	6.9	8.4	10.5	12.0	
Residual ANC (%)			99.9	99.8	99.6	99.5	99.4	99.2	99.1	
Residual Sulfur (%)			99.8	99.6	99.2	98.9	98.5	98.2	98.0	
SO ₄ /(Ca+Mg) molar ratio			2.5	4.1	3.8	3.3	4.6	3.3	2.9	
			< indicates less	than the analytic	al detection limit.	* Acidity and alkalinity data calculated in mg CaCO ₃ /L.				

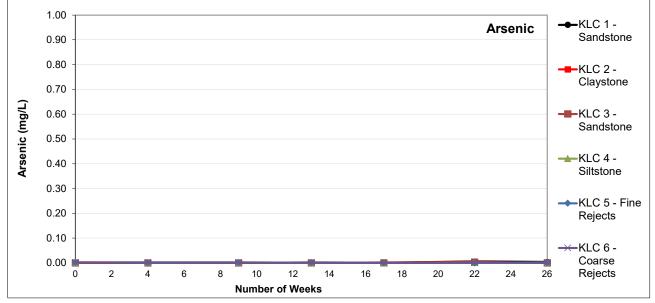
indicates less than the analytical detection limit. * Acidity and alkalinity data calculated in mg CaCO₃/L.
 ** SO₄, Ca and Mg release rates calculated in mg/kg/flush.
 Total S = Total Sulfur; Scr = Chromium Reducible Sulfur; and ANC = Acid Neutralising Capacity.
 MPA = Maximum Potential Acidity, and NAPP = Net Acid Producing Potential.

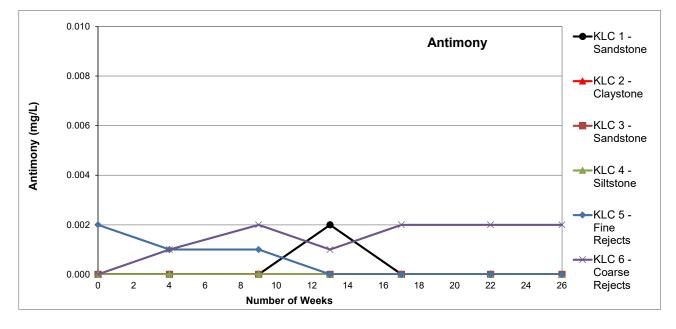


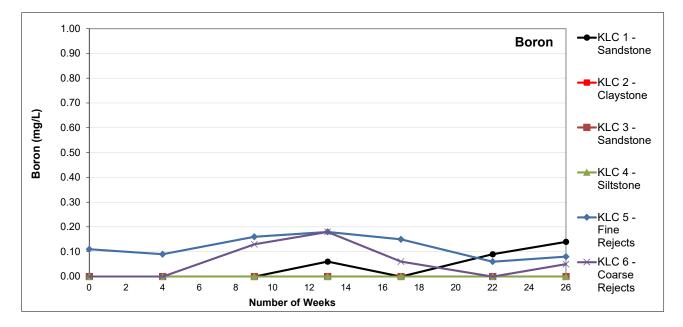


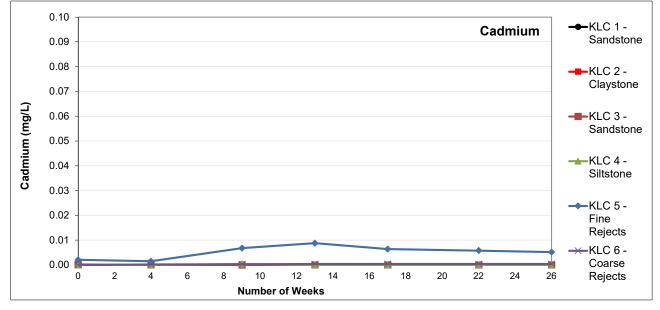


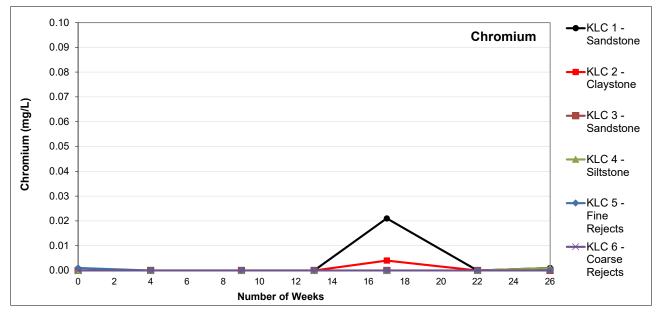


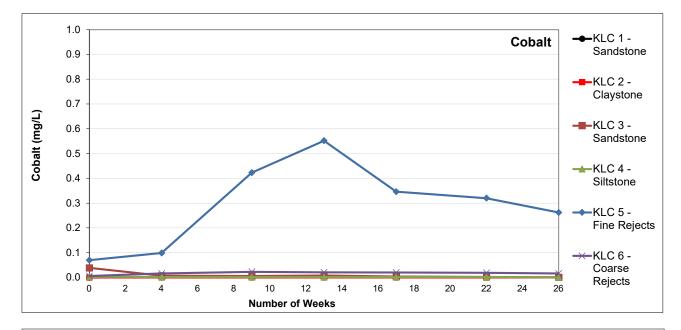


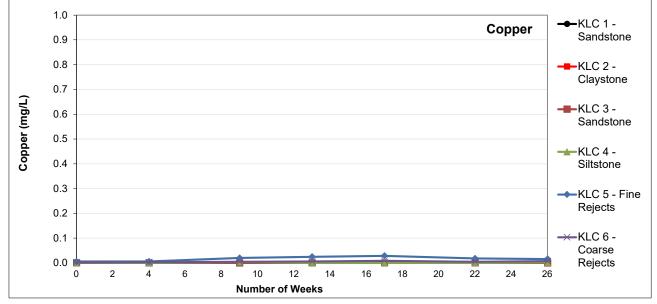


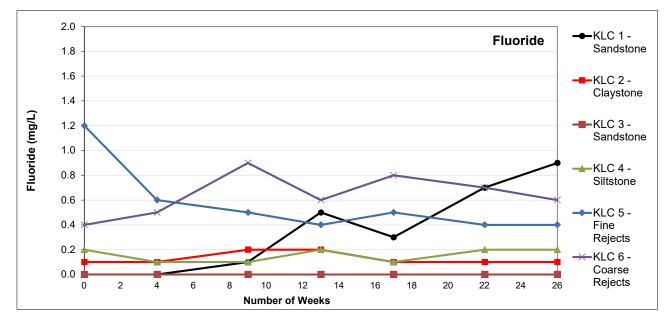


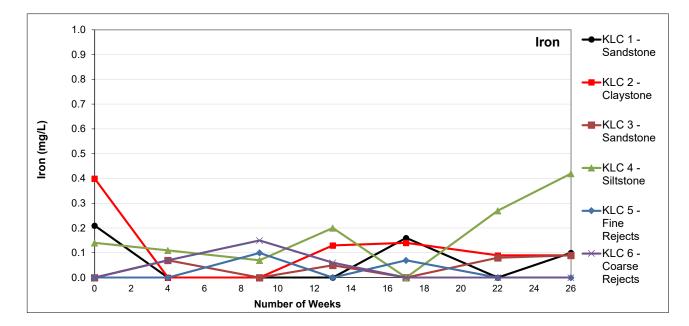


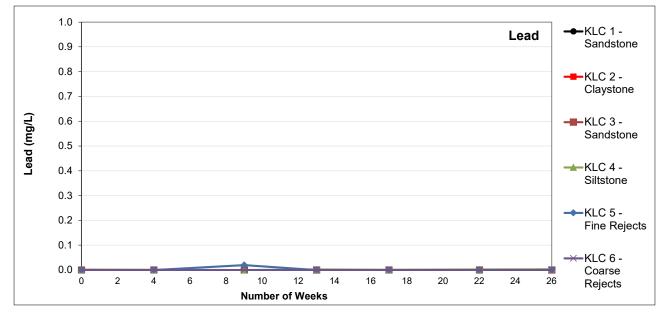


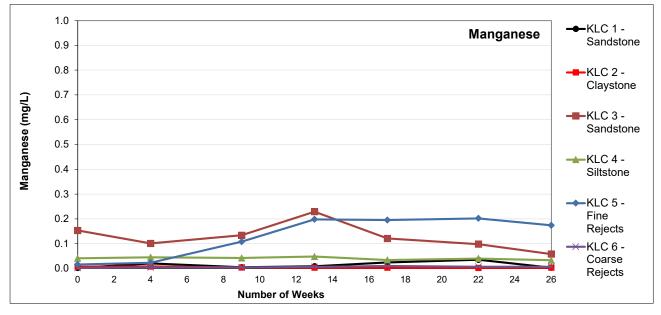


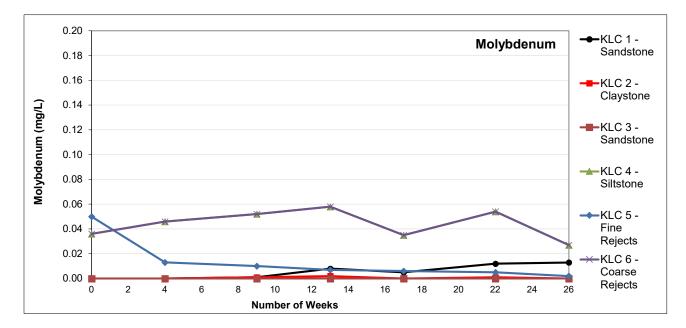


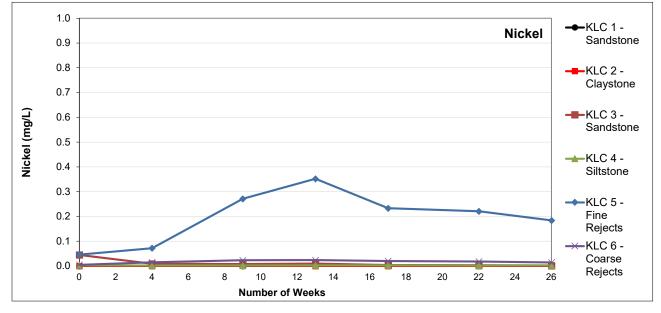


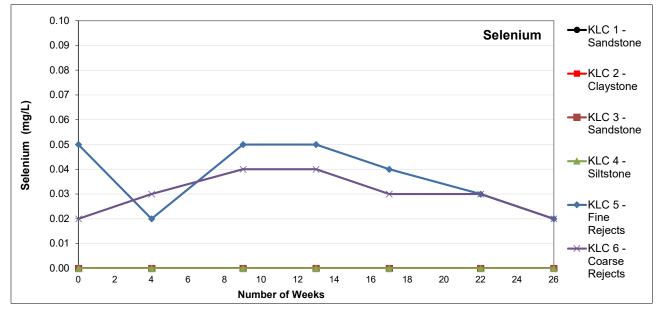


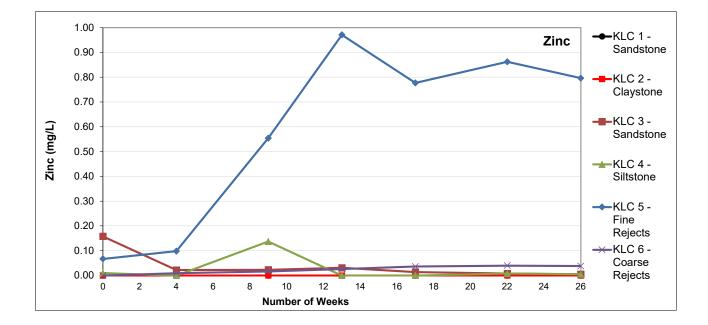












Attachment D ALS Laboratory Results

(Certificates of Analysis)

CERTIFICATE OF ANALYSIS

Work Order	EB1914213	Page	: 1 of 16
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: 2019010 Vulcan Complex (Saraji West)	Date Samples Received	: 03-Jun-2019 15:00
Order number	:	Date Analysis Commenced	: 03-Jun-2019
C-O-C number	:	Issue Date	: 17-Jun-2019 12:41
Sampler	: AMANDA CLEMENTS		NATA
Site	:		
Quote number	: EN/222		Accreditation No. 82
No. of samples received	: 70		Accredited for compliance wit
No. of samples analysed	: 70		ISO/IEC 17025 - Testin

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA031 (Saturated Paste pH): NATA accreditation does not cover the performance of this service.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5
	Clier	nt samplin	g date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-001	EB1914213-002	EB1914213-003	EB1914213-004	EB1914213-005
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-20.5	-91.4	-5.2	-3.8	-6.1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	21.1	92.0	5.8	3.8	6.1
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.2	9.4	0.6	0.4	0.6
Fizz Rating		0	Fizz Unit	1	2	1	0	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.1	8.1	8.0	8.1	7.6
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	2580	2220	1350	401	753
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.02	<0.01	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 6	Composite 7	Composite 8	Composite 9	Composite 10
	Clie	nt samplir	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-006	EB1914213-007	EB1914213-008	EB1914213-009	EB1914213-010
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-22.8	-11.1	-306	-3.2	-10.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	23.4	11.7	307	3.2	10.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.4	1.2	31.3	0.3	1.1
Fizz Rating		0	Fizz Unit	1	1	4	0	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.6	6.8	8.6	8.5	8.0
EA032: Electrical Conductivity (saturat	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	2340	3720	1210	652	655
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.02	<0.01	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 11	Composite 12	Composite 13	Composite 14	Composite 15
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-011	EB1914213-012	EB1914213-013	EB1914213-014	EB1914213-015
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-0.3	-1.8	-12.2	3.4	-9.8
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	0.9	2.4	14.7	5.8	12.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	<0.1	0.2	1.5	0.6	1.3
Fizz Rating		0	Fizz Unit	0	0	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.8	7.8	8.4	7.4	8.3
EA032: Electrical Conductivity (saturate	ed paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	580	852	951	888	898
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.08	0.30	0.09

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 16	Composite 17	Composite 18	Composite 19	Composite 20
	Clier	nt samplin	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-016	EB1914213-017	EB1914213-018	EB1914213-019	EB1914213-020
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-12.7	-15.7	-17.7	-38.7	-25.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	13.9	17.2	18.3	38.7	25.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.4	1.8	1.9	3.9	2.6
Fizz Rating		0	Fizz Unit	1	1	1	2	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.4	8.4	6.8	8.0	7.8
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	789	1090	1840	3200	3320
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.04	0.05	0.02	<0.01	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 21	Composite 22	Composite 23	Composite 24	Composite 25
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-021	EB1914213-022	EB1914213-023	EB1914213-024	EB1914213-025
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-8.0	-4.8	-12.4	-9.1	-9.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	8.0	5.4	13.3	9.7	10.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.8	0.6	1.4	1.0	1.1
Fizz Rating		0	Fizz Unit	1	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.3	7.7	7.2	7.4	8.2
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	874	1210	2930	1210	961
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	0.02	0.03	0.02	0.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clier	nt sample ID	Composite 26	Composite 27	Composite 28	Composite 29	Composite 30
	Clier	nt samplin	g date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-026	EB1914213-027	EB1914213-028	EB1914213-029	EB1914213-030
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-17.6	-65.6	-7.8	-8.0	-14.8
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	17.6	66.2	7.8	8.6	16.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.8	6.8	0.8	0.9	1.6
Fizz Rating		0	Fizz Unit	1	2	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.8	8.4	8.4	7.8	7.4
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	864	2090	679	1810	2080
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	0.02	<0.01	0.02	0.04

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 31	Composite 32	Composite 33	Composite 34	Composite 35
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-031	EB1914213-032	EB1914213-033	EB1914213-034	EB1914213-035
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-11.2	-10.5	-8.2	-16.3	-85.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	11.2	11.1	8.2	16.9	85.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.1	1.1	0.8	1.7	8.7
Fizz Rating		0	Fizz Unit	1	1	1	1	2
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.8	7.6	7.6	7.7	8.0
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	1700	1340	1040	2550	2820
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	0.02	<0.01	0.02	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 36	Composite 37	Composite 38	Composite 39	Composite 40
	Clie	ent samplir	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-036	EB1914213-037	EB1914213-038	EB1914213-039	EB1914213-040
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-27.2	-19.2	-19.8	-13.4	-9.0
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	27.2	19.2	20.4	13.4	9.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.8	2.0	2.1	1.4	1.0
Fizz Rating		0	Fizz Unit	1	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.4	8.2	7.8	7.8	8.0
EA032: Electrical Conductivity (saturate	ed paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	1520	1580	2930	2080	1950
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	0.02	<0.01	0.02

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 41	Composite 42	Composite 43	Composite 44	Composite 45
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-041	EB1914213-042	EB1914213-043	EB1914213-044	EB1914213-045
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-8.5	-7.8	-6.2	-2.4	-8.3
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	9.1	8.4	6.8	2.4	8.3
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.9	0.8	0.7	0.2	0.8
Fizz Rating		0	Fizz Unit	1	1	1	0	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.4	8.0	8.0	7.9	8.1
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	1390	1030	480	305	885
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.02	<0.01	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 46	Composite 47	Composite 48	Composite 49	Composite 50
	Clie	ent samplir	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-046	EB1914213-047	EB1914213-048	EB1914213-049	EB1914213-050
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-26.5	-127	-50.4	-33.8	-23.1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	27.1	127	50.4	33.8	23.7
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.8	12.9	5.1	3.4	2.4
Fizz Rating		0	Fizz Unit	1	2	2	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.8	8.1	7.7	7.8	8.1
EA032: Electrical Conductivity (saturate	ed paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	1630	2680	2440	2470	1120
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	<0.01	<0.01	<0.01	0.02

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite 51	Composite 52	Composite 53	Composite 54	Composite 55
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound C	CAS Number	LOR	Unit	EB1914213-051	EB1914213-052	EB1914213-053	EB1914213-054	EB1914213-055
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-7.9	-5.0	-12.6	-27.0	-15.0
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	8.5	5.9	12.6	27.9	15.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.9	0.6	1.3	2.8	1.6
Fizz Rating		0	Fizz Unit	1	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.9	7.8	8.0	8.2	8.0
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	857	934	658	2430	2000
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.03	<0.01	0.03	0.02

Page	: 14 of 16
Work Order	: EB1914213
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite 56	Composite 57	Composite 58	Composite 59	Composite 60
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound C	CAS Number	LOR	Unit	EB1914213-056	EB1914213-057	EB1914213-058	EB1914213-059	EB1914213-060
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-91.5	-26.3	-6.9	-4.7	-2.4
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	92.1	26.9	6.9	5.3	3.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	9.4	2.7	0.7	0.5	0.3
Fizz Rating		0	Fizz Unit	2	1	1	0	0
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.6	8.2	8.2	8.3	8.3
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	1260	1920	1220	1050	419
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	<0.01	0.02	0.02

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite 62	Composite 63	Composite 64	Composite 65	Composite 66
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-062	EB1914213-063	EB1914213-064	EB1914213-065	EB1914213-066
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-6.4	-15.8	-105	-90.9	-52.0
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	7.0	15.8	106	91.5	52.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.7	1.6	10.9	9.3	5.3
Fizz Rating		0	Fizz Unit	1	1	2	2	2
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.0	7.6	8.0	8.2	8.6
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	682	2300	3290	3520	696
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	<0.01	0.02	0.02	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	Composite 67	Composite 68	Composite 69	Composite 70	pH and EC - DI Water
	Clie	ent sampli	ing date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914213-067	EB1914213-068	EB1914213-069	EB1914213-070	EB1914213-071
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit					5.6
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-6.4	-3.5	-8.6	-32.7	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm					<1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	6.4	3.5	9.2	32.7	
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.6	0.4	0.9	3.3	
Fizz Rating		0	Fizz Unit	1	0	1	1	
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.4	8.5	7.6	7.7	
EA032: Electrical Conductivity (saturate	d paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	308	224	514	884	
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	0.02	<0.01	

CERTIFICATE OF ANALYSIS

Work Order	EB1914214	Page	: 1 of 16	
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Bris	sbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD	Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2019010 Vulcan Complex (Saraji West)	Date Samples Received	: 03-Jun-2019 15:00	awillin.
Order number	:	Date Analysis Commenced	: 03-Jun-2019	
C-O-C number	:	Issue Date	: 17-Jun-2019 17:17	
Sampler	: AMANDA CLEMENTS			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 70			Accredited for compliance with
No. of samples analysed	: 70			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Tom Maloney	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Tom Maloney	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA031 (Saturated Paste pH): NATA accreditation does not cover the performance of this service.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Page	: 3 of 16
Work Order	: EB1914214
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite 71	Composite 72	Composite 73	Composite 74	Composite 75
	Clie	ent samplir	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-001	EB1914214-002	EB1914214-003	EB1914214-004	EB1914214-005
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-218	-25.6	-18.9	-21.5	-7.1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	218	26.5	18.9	22.1	7.1
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	22.3	2.7	1.9	2.2	0.7
Fizz Rating		0	Fizz Unit	3	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.1	8.0	7.9	8.0	8.2
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	2420	2230	1710	1260	375
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	0.03	<0.01	0.02	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite 76	Composite 77	Composite 78	Composite 79	Composite 80
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-006	EB1914214-007	EB1914214-008	EB1914214-009	EB1914214-010
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-29.8	-11.3	-106	-69.5	-73.4
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	29.8	11.3	107	70.1	74.0
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	3.0	1.2	10.9	7.1	7.6
Fizz Rating		0	Fizz Unit	1	1	3	2	2
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.2	7.7	8.0	8.0	8.3
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	1120	2280	2780	2910	1430
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	0.02	0.02	0.02

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 81	Composite 82	Composite 83	Composite 84	Composite 85
	Cli	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-011	EB1914214-012	EB1914214-013	EB1914214-014	EB1914214-015
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-18.5	-12.2	-7.0	-80.6	-29.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	18.5	12.2	7.0	81.2	29.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.9	1.2	0.7	8.3	3.0
Fizz Rating		0	Fizz Unit	1	1	1	2	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.3	8.3	8.2	8.4	8.5
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	1350	565	443	450	957
ED042T: Total Sulfur by LECO							-	
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	<0.01	0.02	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite 86	Composite 87	Composite 88	Composite 89	Composite 90
	Clier	nt sampling	g date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-016	EB1914214-017	EB1914214-018	EB1914214-019	EB1914214-020
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-111	-49.4	-17.7	-14.2	-11.5
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	111	49.4	18.3	14.8	12.1
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	11.3	5.0	1.9	1.5	1.2
Fizz Rating		0	Fizz Unit	2	2	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.1	7.7	7.8	7.7	7.9
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	2100	2490	2540	2540	1350
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	0.02	0.02	0.02

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 91	Composite 92	Composite 93	Composite 94	Composite 95
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-021	EB1914214-022	EB1914214-023	EB1914214-024	EB1914214-025
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-22.4	-9.7	-15.6	-27.4	-63.0
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	23.0	10.3	16.5	28.3	63.9
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	2.3	1.0	1.7	2.9	6.5
Fizz Rating		0	Fizz Unit	1	1	1	1	2
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.5	5.3	7.2	7.5	7.7
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	2140	2320	2160	2250	2110
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.03	0.03	0.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 96	Composite 97	Composite 98	Composite 99	Composite 100
	Clie	nt samplir	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-026	EB1914214-027	EB1914214-028	EB1914214-029	EB1914214-030
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-9.7	-15.9	-15.3	-5.8	-6.7
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	10.6	16.8	15.9	6.4	6.7
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.1	1.7	1.6	0.6	0.7
Fizz Rating		0	Fizz Unit	1	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.2	7.8	8.2	7.7	7.9
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	2440	1680	548	559	596
ED042T: Total Sulfur by LECO							-	-
Sulfur - Total as S (LECO)		0.01	%	0.03	0.03	0.02	0.02	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 101	Composite 102	Composite 103	Composite 104	Composite 105
	Clie	nt samplin	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-031	EB1914214-032	EB1914214-033	EB1914214-034	EB1914214-035
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-6.9	-18.2	1.2	-5.1	-6.0
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	7.5	18.8	<0.5	5.1	6.6
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.8	1.9	<0.1	0.5	0.7
Fizz Rating		0	Fizz Unit	1	1	0	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.0	8.4	6.1	7.9	7.9
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	551	1100	771	787	869
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	0.04	<0.01	0.02

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 106	Composite 107	Composite 108	Composite 109	Composite 110
	Clie	ent samplir	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-036	EB1914214-037	EB1914214-038	EB1914214-039	EB1914214-040
			-	Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	<0.5	-6.2	-13.0	-21.6	-158
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	<0.5	6.2	13.6	22.8	158
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	<0.1	0.6	1.4	2.3	16.1
Fizz Rating		0	Fizz Unit	0	1	1	1	3
EA031: pH (saturated paste)								
Ø pH (Saturated Paste)		0.1	pH Unit	7.7	7.7	8.4	8.1	8.2
EA032: Electrical Conductivity (saturate	ed paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	748	1340	873	635	1800
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	0.02	0.04	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 111	Composite 112	Composite 113	Composite 114	Composite 115
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-041	EB1914214-042	EB1914214-043	EB1914214-044	EB1914214-045
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-45.6	-12.3	-10.1	-7.1	-8.1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	45.6	13.2	10.1	7.1	8.1
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	4.6	1.3	1.0	0.7	0.8
Fizz Rating		0	Fizz Unit	2	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.3	8.3	8.0	7.8	7.5
EA032: Electrical Conductivity (saturate	d paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	1120	1010	1150	1820	1340
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	0.03	<0.01	<0.01	<0.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	Composite 116	Composite 117	Composite 118	Composite 119	Composite 120
	Clie	ent samplin	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-046	EB1914214-047	EB1914214-048	EB1914214-049	EB1914214-050
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-12.3	0.6	<0.5	-1.2	1.2
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	12.9	<0.5	<0.5	1.2	2.2
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.3	<0.1	<0.1	0.1	0.2
Fizz Rating		0	Fizz Unit	1	0	0	0	0
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.2	6.3	8.0	5.9	5.1
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	777	370	247	693	686
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.02	<0.01	<0.01	0.11

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 121	Composite 122	Composite 123	Composite 124	Composite 125
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-051	EB1914214-052	EB1914214-053	EB1914214-054	EB1914214-055
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-1.7	-10.2	-3.6	-1.0	-8.2
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	1.7	11.1	6.0	1.6	8.8
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.2	1.1	0.6	0.2	0.9
Fizz Rating		0	Fizz Unit	0	1	1	0	1
EA031: pH (saturated paste)								
Ø pH (Saturated Paste)		0.1	pH Unit	6.0	7.6	7.4	6.7	6.6
EA032: Electrical Conductivity (saturate	ed paste)							
Ø Electrical Conductivity (Saturated Paste)		1	μS/cm	240	1540	578	408	1500
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	0.03	0.08	0.02	0.02

Page	: 14 of 16
Work Order	: EB1914214
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 126	Composite 127	Composite 128	Composite 129	Composite 130
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-056	EB1914214-057	EB1914214-058	EB1914214-059	EB1914214-060
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-8.8	-10.0	-5.4	0.6	0.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	9.4	12.8	6.6	<0.5	<0.5
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	1.0	1.3	0.7	<0.1	<0.1
Fizz Rating		0	Fizz Unit	1	1	1	0	0
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	7.7	8.3	8.4	6.4	5.7
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	970	1240	4180	48	335
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.02	0.09	0.04	0.02	0.02

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite 131	Composite 132	Composite 133	Composite 134	Composite 135
	Clie	ent sampli	ng date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-061	EB1914214-062	EB1914214-063	EB1914214-064	EB1914214-065
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-4.8	-10.1	-5.2	-5.3	-6.6
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	5.7	11.0	7.7	5.9	7.2
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.6	1.1	0.8	0.6	0.7
Fizz Rating		0	Fizz Unit	1	1	1	1	1
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	6.0	6.6	5.7	6.5	7.4
EA032: Electrical Conductivity (saturate	ed paste)							
ø Electrical Conductivity (Saturated Paste)		1	μS/cm	216	106	405	345	826
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.03	0.03	0.08	0.02	0.02

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	Composite 136	Composite 137	Composite 138	Composite 139	pH and EC - DI Water
	Clie	ent sampli	ing date / time	03-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1914214-066	EB1914214-067	EB1914214-068	EB1914214-069	EB1914214-070
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit					5.5
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	-5.1	-7.8	-14.8	-13.6	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm					<1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	5.1	7.8	15.4	14.2	
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.5	0.8	1.6	1.4	
Fizz Rating		0	Fizz Unit	1	1	1	1	
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	6.8	7.7	8.5	8.6	
EA032: Electrical Conductivity (saturate	d paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	521	895	695	1360	
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	<0.01	<0.01	0.02	0.02	

CERTIFICATE OF ANALYSIS

Work Order	EB1916203	Page	: 1 of 9	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053	
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2019010 Vulcan Complex (Saraji West)	Date Samples Received	: 21-Jun-2019 17:05	
Order number	:	Date Analysis Commenced	: 25-Jun-2019	
C-O-C number	:	Issue Date	: 01-Jul-2019 12:22	ALATA
Sampler	:		Hac-MR/	A NATA
Site	:			
Quote number	: EN/222		" International States	Accreditation No. 825
No. of samples received	: 9		A	ccredited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ED037 (Alkalinity): NATA accreditation does not cover the performance of this service.
- ED038 (Acidity): NATA accreditation does not cover the performance of this service.
- ALS is not NATA accredited for the analysis of Exchangeable Aluminium and Exchange Acidity in soils when performed under ALS Method ED005.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- EG005T (Total Metals by ICP-AES): Sample EB1916203 005 (Composite 3) shows poor matrix spike recovery due to matrix interference. Confirmed by re-extraction and re-analysis.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Sub-Matrix: PULP Matrix: SOIL)		Clie	ent sample ID	Sample 14	Sample 120	Composite 1	Composite 2	Composite 3
,	Cli	ent sampli	ng date / time	21-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1916203-001	EB1916203-002	EB1916203-003	EB1916203-004	EB1916203-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit			8.2	8.6	8.5
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm			552	346	788
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.153	0.083			
EA055: Moisture Content (Dried @ 10								
Moisture Content		1.0	%			4.0	<1.0	4.8
ED006: Exchangeable Cations on Alk		-					-	
Exchangeable Calcium		0.2	meq/100g			6.2	0.9	3.0
Ø Exchangeable Magnesium		0.2	meq/100g			9.1	3.1	12.3
Ø Exchangeable Potassium		0.2	meq/100g			0.2	1.1	0.2
Ø Exchangeable Sodium		0.2	meq/100g			1.9	0.7	3.0
7 Cation Exchange Capacity		0.2	meq/100g			17.4	5.8	18.6
Ø Exchangeable Sodium Percent		0.2	%			10.8	12.1	16.3
Ø Calcium/Magnesium Ratio		0.2	-			0.7	0.3	0.2
Ø Magnesium/Potassium Ratio		0.2	-			37.6	2.7	60.5
ED037: Alkalinity								1
Ø Total Alkalinity as CaCO3		1	mg/kg			8840	2820	14900
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg			8840	2820	14900
Ø Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg			<5	<5	<5
ED038A: Acidity								
Acidity		1	mg/kg			12	<5	<5
ED040S : Soluble Sulfate by ICPAES			3 3					
Sulfate as SO4 2-	14808-79-8	10	mg/kg			150	140	230
Silica	7631-86-9	1	mg/kg			51	45	52
ED045G: Chloride by Discrete Analys		•						
Chloride	er 16887-00-6	10	mg/kg			300	240	700
	10007-00-0	10	iiig/kg			500	270	700
D093S: Soluble Major Cations	7440 70 0	10	mg/kg			60	10	20
Calcium Magnesium	7440-70-2	10				60	30	50
Sodium	7439-95-4	10	mg/kg			460	270	730
Potassium	7440-23-5	10	mg/kg mg/kg			<10	30	<10
r บเลริร์เนIII	7440-09-7	10	mg/kg			10	30	10

Page	: 4 of 9
Work Order	: EB1916203
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Sample 14	Sample 120	Composite 1	Composite 2	Composite 3
	Cli	ent samplii	ng date / time	21-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1916203-001	EB1916203-002	EB1916203-003	EB1916203-004	EB1916203-005
			-	Result	Result	Result	Result	Result
ED093T: Total Major Cations -	Continued							
Sodium	7440-23-5	50	mg/kg			950	490	1670
Potassium	7440-09-7	50	mg/kg			270	680	290
Calcium	7440-70-2	50	mg/kg			5710	2420	9470
Magnesium	7439-95-4	50	mg/kg			4080	2140	8890
EG005(ED093)S : Soluble Meta	als by ICPAES							
Boron	7440-42-8	1	mg/kg			<1	<1	<1
Iron	7439-89-6	1	mg/kg			<1	<1	<1
EG005(ED093)T: Total Metals b								
Aluminium	7429-90-5	50	mg/kg			9520	2090	10900
Antimony	7440-36-0	5	mg/kg			<5	<5	<5
Barium	7440-39-3	10	mg/kg			150	50	170
Beryllium	7440-41-7	1	mg/kg			<1	<1	<1
Boron	7440-42-8	50	mg/kg			<50	<50	<50
Cobalt	7440-48-4	2	mg/kg			17	3	19
Iron	7439-89-6	50	mg/kg			17200	8640	25400
Manganese	7439-96-5	5	mg/kg			538	103	466
Molybdenum	7439-98-7	2	mg/kg			<2	<2	<2
Selenium	7782-49-2	5	mg/kg			<5	<5	<5
Thallium	7440-28-0	5	mg/kg			<5	<5	<5
Arsenic	7440-38-2	5	mg/kg			<5	<5	<5
Cadmium	7440-43-9	1	mg/kg			<1	<1	<1
Chromium	7440-47-3	2	mg/kg			46	38	53
Copper	7440-50-8	5	mg/kg			7	6	11
Lead	7439-92-1	5	mg/kg			6	6	<5
Nickel	7440-02-0	2	mg/kg			24	6	34
Zinc	7440-66-6	5	mg/kg			14	17	31
EG020S: Soluble Metals by ICF								
Arsenic	7440-38-2	0.01	mg/kg			<0.01	0.01	<0.01
Selenium	7782-49-2	0.1	mg/kg			<0.1	<0.1	<0.1
Barium	7440-39-3	0.01	mg/kg			0.14	0.06	0.08
Beryllium	7440-41-7	0.01	mg/kg			<0.01	<0.01	<0.01
Cadmium	7440-43-9	0.01	mg/kg			<0.01	<0.01	<0.01
Cobalt	7440-48-4	0.01	mg/kg			<0.01	<0.01	<0.01
Chromium	7440-47-3	0.01	mg/kg			<0.01	<0.01	<0.01

Page	: 5 of 9
Work Order	: EB1916203
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: PULP (Matrix: SOIL)		Client sample ID			Sample 120	Composite 1	Composite 2	Composite 3
	Cli	ent sampli	ng date / time	21-Jun-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1916203-001	EB1916203-002	EB1916203-003	EB1916203-004	EB1916203-005
				Result	Result	Result	Result	Result
EG020S: Soluble Metals by ICPMS -	- Continued							
Thorium	7440-29-1	0.01	mg/kg			<0.01	<0.01	<0.01
Copper	7440-50-8	0.01	mg/kg			0.03	<0.01	<0.01
Manganese	7439-96-5	0.01	mg/kg			0.04	<0.01	<0.01
Molybdenum	7439-98-7	0.01	mg/kg			0.01	0.02	0.01
Nickel	7440-02-0	0.01	mg/kg			0.03	<0.01	<0.01
Lead	7439-92-1	0.01	mg/kg			<0.01	<0.01	<0.01
Antimony	7440-36-0	0.01	mg/kg			<0.01	<0.01	<0.01
Uranium	7440-61-1	0.01	mg/kg			0.01	<0.01	<0.01
Zinc	7440-66-6	0.05	mg/kg			<0.05	<0.05	<0.05
Vanadium	7440-62-2	0.1	mg/kg			<0.1	<0.1	<0.1
Aluminium	7429-90-5	0.1	mg/kg			<0.1	0.3	0.2
EG020T: Total Metals by ICP-MS								
Uranium	7440-61-1	0.1	mg/kg			0.3	0.3	0.8
EG035S: Soluble Mercury by FIMS								
Mercury	7439-97-6	0.0005	mg/kg			<0.0005	<0.0005	< 0.0005
EG035T: Total Recoverable Mercur								
Mercury	7439-97-6	0.1	mg/kg			<0.1	<0.1	<0.1
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg			4	2	9
EK071G: Reactive Phosphorus as F	P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg			<0.1	<0.1	0.1

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 4	Composite 5	Composite 6	
	Cli	ent sampli	ng date / time	21-Jun-2019 00:00	21-Jun-2019 00:00	21-Jun-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1916203-006	EB1916203-007	EB1916203-008	
				Result	Result	Result	
EA002: pH 1:5 (Soils)							
pH Value		0.1	pH Unit	8.2	6.8	7.1	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	µS/cm	490	167	264	
EA055: Moisture Content (Dried @ 10	5-110°C)						
Moisture Content		1.0	%	1.6	<1.0	<1.0	
ED006: Exchangeable Cations on Alka	aline Soils						
Ø Exchangeable Calcium		0.2	meq/100g	1.0			
Ø Exchangeable Magnesium		0.2	meq/100g	3.4			
Ø Exchangeable Potassium		0.2	meq/100g	0.4			
Ø Exchangeable Sodium		0.2	meq/100g	0.7			
Ø Cation Exchange Capacity		0.2	meq/100g	5.6			
Ø Exchangeable Sodium Percent		0.2	%	13.0			
Ø Calcium/Magnesium Ratio		0.2	-	0.3			
ø Magnesium/Potassium Ratio		0.2	-	8.8			
ED007: Exchangeable Cations							
Exchangeable Calcium		0.1	meq/100g		0.8	0.9	
Exchangeable Magnesium		0.1	meq/100g		1.9	5.3	
Exchangeable Potassium		0.1	meq/100g		1.0	1.4	
Exchangeable Sodium		0.1	meq/100g		0.9	2.5	
Cation Exchange Capacity		0.1	meq/100g		4.8	10.2	
Exchangeable Sodium Percent		0.1	%		20.4	24.6	
Calcium/Magnesium Ratio		0.1	-		0.4	0.2	
Magnesium/Potassium Ratio		0.1	-		1.8	3.8	
ED037: Alkalinity							
Ø Total Alkalinity as CaCO3		1	mg/kg	2730	175	718	
Ø Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg	2730	175	718	
Ø Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg	<5	<5	<5	
ED038A: Acidity							
Acidity		1	mg/kg	16	39	24	
ED040S : Soluble Sulfate by ICPAES							
Sulfate as SO4 2-	14808-79-8	10	mg/kg	220	150	120	
Silica	7631-86-9	1	mg/kg	50	64	72	
ED045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	10	mg/kg	410	90	180	

Sub-Matrix: PULP (Matrix: SOIL)		Clie	ent sample ID	Composite 4	Composite 5	Composite 6	
	Cli	ient samplii	ng date / time	21-Jun-2019 00:00	21-Jun-2019 00:00	21-Jun-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1916203-006	EB1916203-007	EB1916203-008	
			-	Result	Result	Result	
ED093S: Soluble Major Cations	s						
Calcium	7440-70-2	10	mg/kg	20	<10	<10	
Magnesium	7439-95-4	10	mg/kg	40	<10	<10	
Sodium	7440-23-5	10	mg/kg	420	130	260	
Potassium	7440-09-7	10	mg/kg	40	60	40	
ED093T: Total Major Cations							
Sodium	7440-23-5	50	mg/kg	730	260	770	
Potassium	7440-09-7	50	mg/kg	950	1180	2200	
Calcium	7440-70-2	50	mg/kg	1890	370	460	
Magnesium	7439-95-4	50	mg/kg	2320	760	1430	
EG005(ED093)S : Soluble Meta							
Boron	7440-42-8	1	mg/kg	<1	<1	<1	
Iron	7439-89-6	1	mg/kg	<1	<1	<1	
EG005(ED093)T: Total Metals b			00				
Aluminium	7429-90-5	50	mg/kg	5120	2280	3000	
Antimony	7440-36-0	5	mg/kg	<5	<5	<5	
Barium	7440-39-3	10	mg/kg	80	70	50	
Beryllium	7440-41-7	1	mg/kg	1	<1	2	
Boron	7440-42-8	50	mg/kg	<50	<50	<50	
Cobalt	7440-48-4	2	mg/kg	11	4	10	
Iron	7439-89-6	50	mg/kg	17700	12200	22200	
Manganese	7439-96-5	5	mg/kg	188	126	331	
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	
Thallium	7440-28-0	5	mg/kg	<5	<5	6	
Arsenic	7440-38-2	5	mg/kg	<5	<5	5	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	34	69	24	
Copper	7440-50-8	5	mg/kg	13	8	27	
Lead	7439-92-1	5	mg/kg	10	12	30	
Nickel	7440-02-0	2	mg/kg	18	10	18	
Zinc	7440-66-6	5	mg/kg	50	31	91	
EG020S: Soluble Metals by ICF							
Arsenic	7440-38-2	0.01	mg/kg	<0.01	<0.01	<0.01	
Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	<0.1	

Page	: 8 of 9
Work Order	: EB1916203
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: PULP (Matrix: SOIL)	Client sample ID			Composite 4	Composite 5	Composite 6	
	Clien	nt sampling da	ate / time	21-Jun-2019 00:00	21-Jun-2019 00:00	21-Jun-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1916203-006	EB1916203-007	EB1916203-008	
				Result	Result	Result	
EG020S: Soluble Metals by ICPMS - 0	Continued						
Barium	7440-39-3	0.01 I	mg/kg	0.04	0.02	0.01	
Beryllium	7440-41-7	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Cadmium	7440-43-9	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Cobalt	7440-48-4	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Chromium	7440-47-3	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Thorium	7440-29-1	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Copper	7440-50-8	0.01	mg/kg	<0.01	<0.01	<0.01	
Manganese	7439-96-5	0.01 I	mg/kg	<0.01	0.02	0.02	
Molybdenum	7439-98-7	0.01	mg/kg	0.02	<0.01	0.03	
Nickel	7440-02-0	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Lead	7439-92-1	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Antimony	7440-36-0	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Uranium	7440-61-1	0.01 I	mg/kg	<0.01	<0.01	<0.01	
Zinc	7440-66-6	0.05 r	mg/kg	<0.05	<0.05	<0.05	
Vanadium	7440-62-2	0.1 I	mg/kg	<0.1	<0.1	<0.1	
Aluminium	7429-90-5	0.1 I	mg/kg	0.2	1.8	2.4	
EG020T: Total Metals by ICP-MS							
Uranium	7440-61-1	0.1 I	mg/kg	0.7	0.3	0.8	
EG035S: Soluble Mercury by FIMS							
Mercury	7439-97-6 0	0.0005 r	mg/kg	<0.0005	<0.0005	<0.0005	
EG035T: Total Recoverable Mercury							
Mercury		0.1 I	mg/kg	<0.1	<0.1	<0.1	
EK040S: Fluoride Soluble							
Fluoride	16984-48-8	1 1	mg/kg	4	<1	1	
EK071G: Reactive Phosphorus as P	by discrete analyser						
Reactive Phosphorus as P		0.1 I	mg/kg	<0.1	<0.1	<0.1	

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			pH and EC of DI water	 	
Client sampling date / time				24-Jun-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EB1916203-009	 	
				Result	 	
EA002: pH 1:5 (Soils)						
pH Value		0.1	pH Unit	5.4	 	
EA010: Conductivity (1:5)						
Electrical Conductivity @ 25°C		1	µS/cm	<1	 	

CERTIFICATE OF ANALYSIS

Work Order	EB1929251	Page	: 1 of 3	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane	
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053	
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2019010 Saraji West/Vulcan	Date Samples Received	: 04-Nov-2019 09:15	
Order number	:	Date Analysis Commenced	: 04-Nov-2019	
C-O-C number	:	Issue Date	: 08-Nov-2019 13:47	
Sampler	: ALAN ROBERTSON		Hac-MRA N	ATA
Site	:			
Quote number	: EN/222		The Column	the No. opr
No. of samples received	: 5		Accredited for comp	ation No. 825 pliance with
No. of samples analysed	: 5		ISO/IEC 170	025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA031 (Saturated Paste pH): NATA accreditation does not cover the performance of this service.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	IP19006604R005 "Coarse" (Wash 2, -50+2mm) reject	IP19006604R006 "Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP1900410R298 "Coarse" (Wash 2, -50+2mm) reject	IP1900410R299 "Fine (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	pH and EC - DI water
	ient sampli	ng date / time	01-Nov-2019 00:00	01-Nov-2019 00:00	01-Nov-2019 00:00	01-Nov-2019 00:00	01-Nov-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1929251-001	EB1929251-002	EB1929251-003	EB1929251-004	EB1929251-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit					5.0
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	13.6	4.0	6.8	4.4	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm					<1
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	8.4	8.5	1.8	7.2	
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	0.8	0.9	0.2	0.7	
Fizz Rating		0	Fizz Unit	1	1	0	1	
EA031: pH (saturated paste)								
ø pH (Saturated Paste)		0.1	pH Unit	8.4	7.3	8.0	7.0	
EA032: Electrical Conductivity (saturated	paste)							
ø Electrical Conductivity (Saturated Paste)		1	µS/cm	176	484	401	595	
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.72	0.41	0.28	0.38	

CERTIFICATE OF ANALYSIS

Work Order	EB1933850	Page	: 1 of 6	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Br	isbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLI	D Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: 2019010 Saraji West/Vulcan	Date Samples Received	: 13-Dec-2019 11:55	auture
Order number	:	Date Analysis Commenced	: 23-Dec-2019	
C-O-C number	:	Issue Date	: 13-Jan-2020 08:27	
Sampler	: ALAN ROBERTSON			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 10			Accredited for compliance with
No. of samples analysed	: 10			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• ED037 (Alkalinity): NATA accreditation does not cover the performance of this service.

• ED038 (Acidity): NATA accreditation does not cover the performance of this service.

Page	: 3 of 6
Work Order	: EB1933850
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: 2019010 Saraji West/Vulcan

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19002032R587 "Coarse" (Wash 2, -50+2mm) reject	IP19003592R466 "Coarse" (Wash 2, -50+2mm) reject	IP19004096R302 "Coarse" (Wash 2, -50+2mm)reject	IP19004601R298 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19004096R303 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject
	CI	ient sampli	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-001	EB1933850-002	EB1933850-003	EB1933850-004	EB1933850-005
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.049	0.055	0.569	0.018	0.382

Sub-Matrix: SOIL (Matrix: SOIL)	ix: SOIL)				IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	Composite 3	Composite 4	pH and EC of DI water
	Client sampling date / time				02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-006	EB1933850-007	EB1933850-008	EB1933850-009	EB1933850-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit			5.8	6.2	5.6
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm			96	54	<1
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.027	0.152			
ED037: Alkalinity								
Ø Total Alkalinity as CaCO3		1	mg/kg			280	5160	
Ø Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg			280	5160	
Ø Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg			<5	<5	
ED038A: Acidity								
Acidity		1	mg/kg			230	892	
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg			120	100	
Silica	7631-86-9	1	mg/kg			81	43	
ED045G: Chloride by Discrete Analyse			0 0					
Chloride	16887-00-6	10	mg/kg			50	130	
ED093S: Soluble Major Cations	10007 00 0							
Calcium	7440-70-2	10	mg/kg			<10	10	
Magnesium	7439-95-4	10	mg/kg			<10	20	
Sodium	7439-95-4	10	mg/kg			120	120	
Potassium	7440-23-3	10	mg/kg			<10	20	
	1110 00 1							
ED093T: Total Major Cations Sodium	7440-23-5	50	mg/kg			410	470	
Potassium	7440-23-5	50	mg/kg			1270	1280	
Calcium	7440-09-7	50	mg/kg			1600	4780	
Magnesium	7439-95-4	50	mg/kg			680	2700	
EG005(ED093)S : Soluble Metals by IC								1
Boron	7440-42-8	1	mg/kg			<1	<1	
Iron	7440-42-8	1	mg/kg			<1	<1	
EG005(ED093)T: Total Metals by ICP-A		1	mg/kg					

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19002032R588 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	Composite 3	Composite 4	pH and EC of DI water
	Client sampling date / time				02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-006	EB1933850-007	EB1933850-008	EB1933850-009	EB1933850-010
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals by ICP-	AES - Continued							
Aluminium	7429-90-5	50	mg/kg			2770	3360	
Boron	7440-42-8	50	mg/kg			<50	<50	
Iron	7439-89-6	50	mg/kg			7940	6340	
EG020S: Soluble Metals by ICPMS								
Arsenic	7440-38-2	0.01	mg/kg			<0.01	<0.01	
Selenium	7782-49-2	0.1	mg/kg			<0.1	<0.1	
Barium	7440-39-3	0.01	mg/kg			<0.01	0.02	
Beryllium	7440-41-7	0.01	mg/kg			<0.01	<0.01	
Cadmium	7440-43-9	0.01	mg/kg			<0.01	<0.01	
Cobalt	7440-48-4	0.01	mg/kg			<0.01	<0.01	
Chromium	7440-47-3	0.01	mg/kg			<0.01	<0.01	
Thorium	7440-29-1	0.01	mg/kg			<0.01	<0.01	
Copper	7440-50-8	0.01	mg/kg			<0.01	<0.01	
Manganese	7439-96-5	0.01	mg/kg			<0.01	<0.01	
Molybdenum	7439-98-7	0.01	mg/kg			0.04	0.01	
Nickel	7440-02-0	0.01	mg/kg			<0.01	<0.01	
Lead	7439-92-1	0.01	mg/kg			<0.01	<0.01	
Antimony	7440-36-0	0.01	mg/kg			0.02	<0.01	
Uranium	7440-61-1	0.01	mg/kg			<0.01	<0.01	
Zinc	7440-66-6	0.05	mg/kg			<0.05	<0.05	
Vanadium	7440-62-2	0.1	mg/kg			<0.1	<0.1	
Aluminium	7429-90-5	0.1	mg/kg			<0.1	<0.1	
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.1	mg/kg			16.1	10.7	
Selenium	7782-49-2	1	mg/kg			2	2	
Barium	7440-39-3	0.1	mg/kg			313	256	
Beryllium	7440-41-7	0.1	mg/kg			0.9	1.4	
Cadmium	7440-43-9	0.1	mg/kg			0.1	0.1	
Cobalt	7440-48-4	0.1	mg/kg			5.4	5.9	
Chromium	7440-47-3	0.1	mg/kg			0.6	2.1	
Copper	7440-50-8	0.1	mg/kg			55.3	45.9	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19002032R588 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	Composite 3	Composite 4	pH and EC of DI water
	Cli	ent samplii	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-006	EB1933850-007	EB1933850-008	EB1933850-009	EB1933850-010
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS - Co	ontinued							
Thorium	7440-29-1	0.1	mg/kg			1.9	2.0	
Manganese	7439-96-5	0.1	mg/kg			84.6	73.5	
Molybdenum	7439-98-7	0.1	mg/kg			1.2	0.9	
Nickel	7440-02-0	0.1	mg/kg			7.0	12.9	
Lead	7439-92-1	0.1	mg/kg			14.2	18.9	
Antimony	7440-36-0	0.1	mg/kg			0.1	0.1	
Uranium	7440-61-1	0.1	mg/kg			0.8	5.4	
Zinc	7440-66-6	0.5	mg/kg			49.2	72.2	
EG035S: Soluble Mercury by FIMS								
Mercury	7439-97-6	0.0005	mg/kg			<0.0005	<0.0005	
EG035T: Total Recoverable Mercury								
Mercury	7439-97-6	0.1	mg/kg			<0.1	0.1	
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg			1	2	
EK071G: Reactive Phosphorus as P	by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg			0.1	<0.1	

CERTIFICATE OF ANALYSIS

Work Order	EB1932449	Page	: 1 of 4	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division B	Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QL	D Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2019010 Saraji West/Vulcan	Date Samples Received	: 03-Dec-2019 15:29	and the
Order number	:	Date Analysis Commenced	: 04-Dec-2019	
C-O-C number	:	Issue Date	: 12-Dec-2019 13:24	
Sampler	: ALAN ROBERTSON			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 7			Accredited for compliance with
No. of samples analysed	: 7			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA031 (Saturated Paste pH): NATA accreditation does not cover the performance of this service.
- EA032 (Saturated Paste EC): NATA accreditation does not cover the performance of this service.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	IP19004096R302 "Coarse" (Wash 2, -50+2mm)reject	IP19004096R303 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19002032R587 "Coarse" (Wash 2, -50+2mm) reject	IP19002032R588 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19003592R466 "Coarse" (Wash 2, -50+2mm) reject
	Cli	ent sampli	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1932449-001	EB1932449-002	EB1932449-003	EB1932449-004	EB1932449-005
				Result	Result	Result	Result	Result
EA009: Nett Acid Production Potential								
Net Acid Production Potential		0.5	kg H2SO4/t	13.8	4.9	-1.4	-4.4	-16.7
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4 equiv./t	11.3	13.5	10.9	16.9	22.8
ANC as CaCO3		0.1	% CaCO3	1.2	1.4	1.1	1.7	2.3
Fizz Rating		0	Fizz Unit	1	1	1	1	1
EA031: pH (saturated paste)								
Ø pH (Saturated Paste)		0.1	pH Unit	8.3	7.4	4.5	5.6	7.6
EA032: Electrical Conductivity (saturate	d paste)							
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	116	564	454	193	213
ED042T: Total Sulfur by LECO								
Sulfur - Total as S (LECO)		0.01	%	0.82	0.60	0.31	0.41	0.20

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19004601R298 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	 	
	Clie	ent sampli	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	 	
Compound	CAS Number LOR Unit		EB1932449-006	EB1932449-007	 		
				Result	Result	 	
EA009: Nett Acid Production Potential							
Net Acid Production Potential		0.5	kg H2SO4/t	-16.6	-32.3	 	
EA013: Acid Neutralising Capacity							
ANC as H2SO4		0.5	kg H2SO4	23.3	36.0	 	
ANC as CaCO3		0.1	equiv./t % CaCO3	2.4	3.7	 	
Fizz Rating		0	Fizz Unit	1	1	 	
EA031: pH (saturated paste)							
ø pH (Saturated Paste)		0.1	pH Unit	7.6	6.8	 	
EA032: Electrical Conductivity (saturated	d paste)						
Ø Electrical Conductivity (Saturated Paste)		1	µS/cm	466	398	 	
ED042T: Total Sulfur by LECO							
Sulfur - Total as S (LECO)		0.01	%	0.22	0.12	 	

CERTIFICATE OF ANALYSIS

Work Order	EB1931850	Page	: 1 of 8
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB
Address	: PO Box 3091 SUNNYBANK SOUTH QLD, AUSTRALIA 4109	Address	: 2 Byth Street Stafford QLD Australia 4053
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: 2019010 Vulcan Complex (Saraji West)	Date Samples Received	: 27-Nov-2019 11:33
Order number	:	Date Analysis Commenced	: 29-Nov-2019
C-O-C number	:	Issue Date	: 11-Dec-2019 16:16
Sampler	: ALAN ROBERTSON		Hac-MRA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 7		Accredited for compliance with
No. of samples analysed	: 7		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Sarah Ashworth	Laboratory Manager - Brisbane	Stafford Minerals - ST, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• ED037 (Alkalinity): NATA accreditation does not cover the performance of this service.

- ED038 (Acidity): NATA accreditation does not cover the performance of this service.
- EK040S (Fluoride Soluble) Particular samples required dilution prior to analysis due to matrix interferences. LOR values have been adjusted accordingly.
- ED093T (Major Cations Total): Sample Composite of 1 and 3 (EB1931850-005) shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): Sample EB1932078-010 shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): Sample EB1931809-020 shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19006604R005	IP19006604R006	IP1900410R298	IP1900410R299	Composite of 1 and 3
	Cl	ient sampli	ng date / time	01-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1931850-001	EB1931850-002	EB1931850-003	EB1931850-004	EB1931850-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit					8.6
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm					86
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.388	0.190	0.047	0.219	
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%					1.6
ED037: Alkalinity								
Ø Total Alkalinity as CaCO3		1	mg/kg					122
Ø Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg					122
Ø Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg					<5
ED038A: Acidity	0012 02 0							-
Acidity		1	mg/kg					94
-		•						04
ED040S : Soluble Sulfate by ICPAES Sulfate as SO4 2-	14808-79-8	10	mg/kg					90
Silica	7631-86-9	1	mg/kg					17
		I I I I I I I I I I I I I I I I I I I	mg/kg					
ED045G: Chloride by Discrete Analyse Chloride	er 16887-00-6	10	mg/kg					40
	10007-00-0	10	ilig/kg					+0
ED093S: Soluble Major Cations	7440 70 0	10	malka				1	<10
Calcium	7440-70-2	10	mg/kg					<10
Magnesium	7439-95-4	10 10	mg/kg					130
Sodium Potassium	7440-23-5	10	mg/kg mg/kg					<10
	7440-09-7	10	ilig/kg					<10
ED093T: Total Major Cations	7440.00.5	50					1	400
Sodium	7440-23-5	50	mg/kg					120
Potassium	7440-09-7	50	mg/kg					500
Calcium	7440-70-2	50	mg/kg					2650
Magnesium	7439-95-4	50	mg/kg					2160
EG005(ED093)S : Soluble Metals by IC		4						
Boron	7440-42-8	1	mg/kg					<1
Iron	7439-89-6	1	mg/kg					<1
EG005(ED093)T: Total Metals by ICP-4								
Aluminium	7429-90-5	50	mg/kg					1100

Page	: 4 of 8
Work Order	: EB1931850
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Vulcan Complex (Saraji West)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19006604R005	IP19006604R006	IP1900410R298	IP1900410R299	Composite of 1 and 3
	Cli	ent samplii	ng date / time	01-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1931850-001	EB1931850-002	EB1931850-003	EB1931850-004	EB1931850-005
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals	by ICP-AES - Continued							
Antimony	7440-36-0	5	mg/kg					<5
Barium	7440-39-3	10	mg/kg					80
Beryllium	7440-41-7	1	mg/kg					<1
Boron	7440-42-8	50	mg/kg					<50
Cobalt	7440-48-4	2	mg/kg					5
Iron	7439-89-6	50	mg/kg					46900
Manganese	7439-96-5	5	mg/kg					1100
Molybdenum	7439-98-7	2	mg/kg					<2
Selenium	7782-49-2	5	mg/kg					<5
Thallium	7440-28-0	5	mg/kg					<5
Arsenic	7440-38-2	5	mg/kg					7
Cadmium	7440-43-9	1	mg/kg					<1
Chromium	7440-47-3	2	mg/kg					<2
Copper	7440-50-8	5	mg/kg					23
Lead	7439-92-1	5	mg/kg					6
Nickel	7440-02-0	2	mg/kg					6
Zinc	7440-66-6	5	mg/kg					62
EG020S: Soluble Metals by IC			0.0					
Arsenic	7440-38-2	0.01	mg/kg					0.01
Selenium	7440-38-2	0.1	mg/kg					<0.1
Barium	7440-39-3	0.01	mg/kg					<0.01
Beryllium	7440-39-3	0.01	mg/kg					<0.01
Cadmium	7440-43-9	0.01	mg/kg					<0.01
Cobalt	7440-43-9	0.01	mg/kg					<0.01
Chromium	7440-48-4	0.01	mg/kg					<0.01
Thorium	7440-47-3	0.01	mg/kg					<0.01
Copper		0.01	mg/kg					0.01
Manganese	7440-50-8 7439-96-5	0.01	mg/kg					<0.01
Molybdenum		0.01	mg/kg					0.17
Nickel	7439-98-7 7440-02-0	0.01	mg/kg					0.17
Lead		0.01						<0.01
	7439-92-1	0.01	mg/kg					0.01
Antimony	7440-36-0		mg/kg					
Uranium	7440-61-1	0.01	mg/kg					<0.01
Zinc	7440-66-6	0.05	mg/kg					<0.05
Vanadium	7440-62-2	0.1	mg/kg					<0.1

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	IP19006604R005	IP19006604R006	IP1900410R298	IP1900410R299	Composite of 1 and 3
	Cli	ient sampli	ng date / time	01-Nov-2019 00:00				
Compound	CAS Number	LOR	Unit	EB1931850-001	EB1931850-002	EB1931850-003	EB1931850-004	EB1931850-005
				Result	Result	Result	Result	Result
EG020S: Soluble Metals by ICPMS - Co	ontinued							
Aluminium	7429-90-5	0.1	mg/kg					0.7
EG020T: Total Metals by ICP-MS								
Uranium	7440-61-1	0.1	mg/kg					0.6
EG035S: Soluble Mercury by FIMS								
Mercury	7439-97-6	0.0005	mg/kg					<0.0005
EG035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.1	mg/kg					0.3
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg					<5
EK071G: Reactive Phosphorus as P by	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg					<0.1
ME-ICP81: Silica and Metals Oxides by	Peroxide Fusion							
Silica as SiO2	7631-86-9	0.01	%					28.0

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite of 2 and 4	pH & EC of DI Water	 	
	Client sampling date / time			01-Nov-2019 00:00	27-Nov-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EB1931850-006	EB1931850-007	 	
				Result	Result	 	
EA002: pH 1:5 (Soils)							
pH Value		0.1	pH Unit	7.4	5.7	 	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	µS/cm	154	<1	 	
EA055: Moisture Content (Dried @ 105	-110°C)						
Moisture Content		1.0	%	1.7		 	
ED037: Alkalinity							
Ø Total Alkalinity as CaCO3		1	mg/kg	166		 	
Ø Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg	166		 	
Ø Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg	<5		 	
ED038A: Acidity							
Acidity		1	mg/kg	242		 	
-		·					
ED040S : Soluble Sulfate by ICPAES Sulfate as SO4 2-	14808 70 8	10	mg/kg	160		 	
Silica	14808-79-8 7631-86-9	10	mg/kg	8		 	
		•	mg/kg				
ED045G: Chloride by Discrete Analyse Chloride		10	mg/kg	120			
	16887-00-6	10	mg/kg	120		 	
ED093S: Soluble Major Cations		10		20			
	7440-70-2	10	mg/kg	20		 	
Magnesium	7439-95-4	10	mg/kg	20		 	
Sodium	7440-23-5	10 10	mg/kg	130 <10		 	
Potassium	7440-09-7	10	mg/kg	<10		 	
ED093T: Total Major Cations		50					
Sodium	7440-23-5	50	mg/kg	150		 	
Potassium	7440-09-7	50	mg/kg	720		 	
Calcium	7440-70-2	50	mg/kg	2090		 	
Magnesium	7439-95-4	50	mg/kg	1120		 	
EG005(ED093)S : Soluble Metals by IC							
Boron	7440-42-8	1	mg/kg	<1		 	
Iron	7439-89-6	1	mg/kg	<1		 	
EG005(ED093)T: Total Metals by ICP-A	ES						
Aluminium	7429-90-5	50	mg/kg	1790		 	
Antimony	7440-36-0	5	mg/kg	<5		 	
Barium	7440-39-3	10	mg/kg	230		 	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Composite of 2 and 4	pH & EC of DI Water	 	
	Cl	Client sampling date / time			27-Nov-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EB1931850-006	EB1931850-007	 	
				Result	Result	 	
EG005(ED093)T: Total Metals by	y ICP-AES - Continued						
Beryllium	7440-41-7	1	mg/kg	1		 	
Boron	7440-42-8	50	mg/kg	<50		 	
Cobalt	7440-48-4	2	mg/kg	22		 	
Iron	7439-89-6	50	mg/kg	11200		 	
Manganese	7439-96-5	5	mg/kg	179		 	
Molybdenum	7439-98-7	2	mg/kg	3		 	
Selenium	7782-49-2	5	mg/kg	<5		 	
Thallium	7440-28-0	5	mg/kg	<5		 	
Arsenic	7440-38-2	5	mg/kg	12		 	
Cadmium	7440-43-9	1	mg/kg	<1		 	
Chromium	7440-47-3	2	mg/kg	<2		 	
Copper	7440-50-8	5	mg/kg	44		 	
Lead	7439-92-1	5	mg/kg	15		 	
Nickel	7440-02-0	2	mg/kg	23		 	
Zinc	7440-66-6	5	mg/kg	145		 	
EG020S: Soluble Metals by ICP	MS						
Arsenic	7440-38-2	0.01	mg/kg	<0.01		 	
Selenium	7782-49-2	0.1	mg/kg	<0.1		 	
Barium	7440-39-3	0.01	mg/kg	0.01		 	
Beryllium	7440-41-7	0.01	mg/kg	<0.01		 	
Cadmium	7440-43-9	0.01	mg/kg	<0.01		 	
Cobalt	7440-48-4	0.01	mg/kg	<0.01		 	
Chromium	7440-47-3	0.01	mg/kg	<0.01		 	
Thorium	7440-29-1	0.01	mg/kg	<0.01		 	
Copper	7440-50-8	0.01	mg/kg	0.02		 	
Manganese	7439-96-5	0.01	mg/kg	0.02		 	
Molybdenum	7439-98-7	0.01	mg/kg	0.10		 	
Nickel	7440-02-0	0.01	mg/kg	<0.01		 	
Lead	7439-92-1	0.01	mg/kg	<0.01		 	
Antimony	7440-36-0	0.01	mg/kg	<0.01		 	
Uranium	7440-61-1	0.01	mg/kg	<0.01		 	
Zinc	7440-66-6	0.05	mg/kg	<0.05		 	
Vanadium	7440-62-2	0.1	mg/kg	<0.1		 	
Aluminium	7429-90-5	0.1	mg/kg	<0.1		 	

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			Composite of 2 and 4	pH & EC of DI Water	 	
	Cli	ent sampliı	ng date / time	01-Nov-2019 00:00	27-Nov-2019 00:00	 	
Compound	CAS Number	LOR	Unit	EB1931850-006	EB1931850-007	 	
				Result	Result	 	
EG020T: Total Metals by ICP-MS							
Uranium	7440-61-1	0.1	mg/kg	1.0		 	
EG035S: Soluble Mercury by FIMS							
Mercury	7439-97-6	0.0005	mg/kg	<0.0005		 	
EG035T: Total Recoverable Mercury	by FIMS						
Mercury	7439-97-6	0.1	mg/kg	0.1		 	
EK040S: Fluoride Soluble							
Fluoride	16984-48-8	1	mg/kg	5		 	
EK071G: Reactive Phosphorus as P	by discrete analyser						
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1		 	
ME-ICP81: Silica and Metals Oxides	by Peroxide Fusion						
Silica as SiO2	7631-86-9	0.01	%	34.2		 	

CERTIFICATE OF ANALYSIS : EB1933850 Page : 1 of 6 :1 Laboratory RGS ENVIRONMENTAL PTY LTD : Environmental Division Brisbane : MR ALAN ROBERTSON Contact : Carsten Emrich Address : 2 Byth Street Stafford QLD Australia 4053 : PO Box 3091 SUNNYBANK SOUTH QLD. AUSTRALIA 4109 : +61 07 3344 1222 Telephone : +61 7 3552 8616 : 2019010 Saraji West/Vulcan **Date Samples Received** : 13-Dec-2019 11:55 Order number Date Analysis Commenced : -----: 23-Dec-2019 C-O-C number Issue Date : 16-Jan-2020 11:07 · ____ : ALAN ROBERTSON · ----

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: EN/222

: 10

: 10

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Work Order

Amendment

Client

Contact

Address

Telephone

Project

Sampler

Quote number

No. of samples received

No. of samples analysed

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Po	Position	Accreditation Category
Andrew Epps Se	Senior Inorganic Chemist	Stafford Minerals - ST, Stafford, QLD
Ben Felgendrejeris Se	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe Se	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe Se	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• ED037 (Alkalinity): NATA accreditation does not cover the performance of this service.

- ED038 (Acidity): NATA accreditation does not cover the performance of this service.
- Amendment (16/01/2020): This report has been amended and re-released to allow the reporting of additional analytical data. Total Silica results have now been provided as subcon data.

Page	: 3 of 6
Work Order	: EB1933850 Amendment 1
Client	: RGS ENVIRONMENTAL PTY LTD
Project	2019010 Saraji West/Vulcan

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			IP19002032R587 "Coarse" (Wash 2, -50+2mm) reject	IP19003592R466 "Coarse" (Wash 2, -50+2mm) reject	IP19004096R302 "Coarse" (Wash 2, -50+2mm)reject	IP19004601R298 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19004096R303 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject
	CI	ient sampli	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-001	EB1933850-002	EB1933850-003	EB1933850-004	EB1933850-005
				Result	Result	Result	Result	Result
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.049	0.055	0.569	0.018	0.382

Sub-Matrix: SOIL Client sample ID Matrix: SOIL)			IP19002032R588 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	Composite 3	Composite 4	pH and EC of DI water	
	Ci	lient sampli	ing date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-006	EB1933850-007	EB1933850-008	EB1933850-009	EB1933850-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit			5.8	6.2	5.6
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm			96	54	<1
EA026 : Chromium Reducible Sulfur								
Chromium Reducible Sulphur		0.005	%	0.027	0.152			
ED037: Alkalinity								
Ø Total Alkalinity as CaCO3		1	mg/kg			280	5160	
Ø Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/kg			280	5160	
Ø Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/kg			<5	<5	
ED038A: Acidity								
Acidity		1	mg/kg			230	892	
ED040S : Soluble Sulfate by ICPAES			0.0					
Sulfate as SO4 2-	14808-79-8	10	mg/kg			120	100	
Silica	7631-86-9	1	mg/kg			81	43	
ED045G: Chloride by Discrete Analyse			5 5					
Chloride	16887-00-6	10	mg/kg			50	130	
	10007-00-0	10					100	
ED093S: Soluble Major Cations Calcium	7440-70-2	10	mg/kg			<10	10	
Magnesium	7440-70-2	10	mg/kg			<10	20	
Sodium		10	mg/kg			120	120	
Potassium	7440-23-5 7440-09-7	10	mg/kg			<10	20	
	1440-03-1	10	mg/kg			10		
ED093T: Total Major Cations Sodium	7440.00 5	50	ma/ka			410	470	
Potassium	7440-23-5	50	mg/kg			1270	1280	
Calcium	7440-09-7 7440-70-2	50	mg/kg mg/kg			1270	4780	
Magnesium	7440-70-2	50	mg/kg			680	2700	
		50	iiig/kg			000	2100	
EG005(ED093)S : Soluble Metals by IC		1	malka			<1	<1	
Boron	7440-42-8	1	mg/kg			<1	<1	
	7439-89-6	I	mg/kg			~ 1	~1	

aub-Matrix: SOIL Client sample ID Matrix: SOIL)			IP19002032R588 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	Composite 3	Composite 4	pH and EC of DI water	
	Cl	ient sampli	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-006	EB1933850-007	EB1933850-008	EB1933850-009	EB1933850-010
				Result	Result	Result	Result	Result
EG005(ED093)T: Total Metals by I	CP-AES - Continued							
Aluminium	7429-90-5	50	mg/kg			2770	3360	
Boron	7440-42-8	50	mg/kg			<50	<50	
Iron	7439-89-6	50	mg/kg			7940	6340	
EG020S: Soluble Metals by ICPMS	;							
Arsenic	7440-38-2	0.01	mg/kg			<0.01	<0.01	
Selenium	7782-49-2	0.1	mg/kg			<0.1	<0.1	
Barium	7440-39-3	0.01	mg/kg			<0.01	0.02	
Beryllium	7440-41-7	0.01	mg/kg			<0.01	<0.01	
Cadmium	7440-43-9	0.01	mg/kg			<0.01	<0.01	
Cobalt	7440-48-4	0.01	mg/kg			<0.01	<0.01	
Chromium	7440-47-3	0.01	mg/kg			<0.01	<0.01	
Thorium	7440-29-1	0.01	mg/kg			<0.01	<0.01	
Copper	7440-50-8	0.01	mg/kg			<0.01	<0.01	
Manganese	7439-96-5	0.01	mg/kg			<0.01	<0.01	
Molybdenum	7439-98-7	0.01	mg/kg			0.04	0.01	
Nickel	7440-02-0	0.01	mg/kg			<0.01	<0.01	
Lead	7439-92-1	0.01	mg/kg			<0.01	<0.01	
Antimony	7440-36-0	0.01	mg/kg			0.02	<0.01	
Uranium	7440-61-1	0.01	mg/kg			<0.01	<0.01	
Zinc	7440-66-6	0.05	mg/kg			<0.05	<0.05	
Vanadium	7440-62-2	0.1	mg/kg			<0.1	<0.1	
Aluminium	7429-90-5	0.1	mg/kg			<0.1	<0.1	
EG020T: Total Metals by ICP-MS								
Arsenic	7440-38-2	0.1	mg/kg			16.1	10.7	
Selenium	7782-49-2	1	mg/kg			2	2	
Barium	7440-39-3	0.1	mg/kg			313	256	
Beryllium	7440-41-7	0.1	mg/kg			0.9	1.4	
Cadmium	7440-43-9	0.1	mg/kg			0.1	0.1	
Cobalt	7440-48-4	0.1	mg/kg			5.4	5.9	
Chromium	7440-47-3	0.1	mg/kg			0.6	2.1	
Copper	7440-50-8	0.1	mg/kg			55.3	45.9	

Ib-Matrix: SOIL Client sample ID Aatrix: SOIL)		IP19002032R588 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	IP19003592R467 "Fine" (Wash 3 & Fines, -2+0.25 & -0.25+0mm respectively) reject	Composite 3	Composite 4	pH and EC of DI water		
	Cli	ient sampli	ng date / time	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00	02-Dec-2019 00:00
Compound	CAS Number	LOR	Unit	EB1933850-006	EB1933850-007	EB1933850-008	EB1933850-009	EB1933850-010
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS - 0	Continued							
Thorium	7440-29-1	0.1	mg/kg			1.9	2.0	
Manganese	7439-96-5	0.1	mg/kg			84.6	73.5	
Molybdenum	7439-98-7	0.1	mg/kg			1.2	0.9	
Nickel	7440-02-0	0.1	mg/kg			7.0	12.9	
Lead	7439-92-1	0.1	mg/kg			14.2	18.9	
Antimony	7440-36-0	0.1	mg/kg			0.1	0.1	
Uranium	7440-61-1	0.1	mg/kg			0.8	5.4	
Zinc	7440-66-6	0.5	mg/kg			49.2	72.2	
EG035S: Soluble Mercury by FIMS								
Mercury	7439-97-6	0.0005	mg/kg			<0.0005	<0.0005	
EG035T: Total Recoverable Mercu	iry by FIMS							
Mercury	7439-97-6	0.1	mg/kg			<0.1	0.1	
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg			1	2	
EK071G: Reactive Phosphorus as	P by discrete analyser							
Reactive Phosphorus as P	14265-44-2		mg/kg			0.1	<0.1	
ME-ICP81: Silica and Metals Oxide	s by Peroxide Fusion							
Silica as SiO2	7631-86-9	0.01	%			34.9	29.5	

CERTIFICATE OF ANALYSIS

Work Order	EB1916412	Page	: 1 of 4	
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division B	risbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QL	D Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: 2019010 Vulcan (Saraji West)	Date Samples Received	: 25-Jun-2019 14:50	aulun
Order number	: 2019010	Date Analysis Commenced	: 26-Jun-2019	
C-O-C number	:	Issue Date	: 02-Jul-2019 14:52	A A A A A A A A A A A A A A A A A A A
Sampler	: MARY MACILROY			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 4			Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	
	CI	ient sampli	ng date / time	25-Jun-2019 00:00	25-Jun-2019 00:00	25-Jun-2019 00:00	25-Jun-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1916412-001	EB1916412-002	EB1916412-003	EB1916412-004	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.87	6.71	5.84	6.45	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	56	76	616	720	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	7	6	2	5	
Total Alkalinity as CaCO3		1	mg/L	7	6	2	5	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	1	1	2	5	
ED041G: Sulfate (Turbidimetric) as SC						_	-	
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	3	6	111	45	
		•	<u>9</u> / _					
ED045G: Chloride by Discrete Analys Chloride		1	mg/L	10	13	108	193	
	16887-00-6	I.	iiig/L	10	15	100	195	
ED093F: Dissolved Major Cations		4		-1	-1	4	-14	
Calcium	7440-70-2	1	mg/L	<1	<1	4	<1	
Magnesium	7439-95-4	1	mg/L	<1	<1	7	4	
Sodium	7440-23-5	1	mg/L	12	15	104	150	
Potassium	7440-09-7	1	mg/L	<1	<1	6	6	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	1.09	1.07	0.08	0.24	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0002	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.001	0.001	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.039	0.003	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.045	0.003	
Lead	7439-92-1	0.001	mg/L	<0.001	0.001	<0.001	0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.158	0.010	
Manganese	7439-96-5	0.001	mg/L	0.002	0.007	0.153	0.041	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 4 of 4
Work Order	: EB1916412
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: 2019010 Vulcan (Saraji West)

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC 1	KLC 2	KLC 3	KLC 4	
	Cli	ent sampli	ng date / time	25-Jun-2019 00:00	25-Jun-2019 00:00	25-Jun-2019 00:00	25-Jun-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1916412-001	EB1916412-002	EB1916412-003	EB1916412-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	- Continued							
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	0.21	0.40	<0.05	0.14	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	<0.1	0.1	<0.1	0.2	
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	0.48	0.61	5.40	6.48	
Ø Total Cations		0.01	meq/L	0.52	0.65	5.45	7.01	
Ø Ionic Balance		0.01	%			0.51	3.90	

Work Order	EB1918957	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: 2019010 Vulcan (Saraji West)	Date Samples Received	: 22-Jul-2019 15:05
Order number	:	Date Analysis Commenced	: 23-Jul-2019
C-O-C number	:	Issue Date	: 30-Jul-2019 11:01
Sampler	: MARY MACELROY		Iac-MRA NATA
Site	:		
Quote number	: EN/222		The Contraction of the second
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Ionic balances are within acceptable limits as detailed in the 21st Ed. APHA "Standard Methods for the Examination of Water and Wastewater".

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC 1	KLC 2	KLC 3	KLC 4	
	Cl	ient samplii	ng date / time	22-Jul-2019 00:00	22-Jul-2019 00:00	22-Jul-2019 00:00	22-Jul-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1918957-001	EB1918957-002	EB1918957-003	EB1918957-004	
,			-	Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.02	6.86	6.18	6.51	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	171	299	144	557	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	5	4	1	2	
Total Alkalinity as CaCO3		1	mg/L	5	4	1	2	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	1	2	1	6	
ED041G: Sulfate (Turbidimetric) as SC)4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	20	34	22	57	
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	33	63	25	130	
ED093F: Dissolved Major Cations			3					
Calcium	7440-70-2	1	mg/L	2	3	<1	<1	
Magnesium	7439-95-4	1	mg/L	5	9	2	7	
Sodium	7440-23-5	1	mg/L	22	39	23	89	
Potassium	7440-09-7	1	mg/L	<1	<1	1	3	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.22	0.05	0.15	0.14	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cobalt	7440-48-4	0.001	mg/L	0.001	<0.001	0.007	0.002	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.009	0.002	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.022	<0.005	
Manganese	7439-96-5	0.001	mg/L	0.020	0.008	0.101	0.045	
Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 4 of 4
Work Order	: EB1918957
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: 2019010 Vulcan (Saraji West)

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC 1	KLC 2	KLC 3	KLC 4	
	Cl	ient sampli	ng date / time	22-Jul-2019 00:00	22-Jul-2019 00:00	22-Jul-2019 00:00	22-Jul-2019 00:00	
Compound	CAS Number	LOR	Unit	EB1918957-001	EB1918957-002	EB1918957-003	EB1918957-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	- Continued							
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.07	0.11	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	<0.1	0.1	<0.1	0.1	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	1.45	2.56	1.18	4.89	
Ø Total Cations		0.01	meq/L	1.47	2.59	1.19	4.52	
Ø Ionic Balance		0.01	%				3.92	

Work Order	EB1922363	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MS VERONICA CANALES	Contact	: Customer Services EB
Address	:	Address	: 2 Byth Street Stafford QLD Australia 4053
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: Vulcan Template	Date Samples Received	: 27-Aug-2019 15:20
Order number	:	Date Analysis Commenced	: 27-Aug-2019
C-O-C number	: 3545	Issue Date	: 03-Sep-2019 16:55
Sampler	: CARSTEN EMRICH		Iac-MRA NATA
Site	: Vulcan L3		
Quote number	: BN/1234/19		Accreditation No. 825
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Ionic Balance out of acceptable limits for some samples due to analytes not quantified in this report.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cl	ient sampli	ng date / time	27-Aug-2019 11:41	27-Aug-2019 11:44	27-Aug-2019 11:50	27-Aug-2019 11:51	
Compound	CAS Number	LOR	Unit	EB1922363-001	EB1922363-002	EB1922363-003	EB1922363-004	
				Result	Result	Result	Result	
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.25	6.94	6.03	6.41	
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	282	414	181	382	
D037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	8	8	2	3	
Total Alkalinity as CaCO3		1	mg/L	8	8	2	3	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	1	1	2	2	
ED041G: Sulfate (Turbidimetric) as S0	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	39	71	40	48	
ED045G: Chloride by Discrete Analys								
Chloride	16887-00-6	1	mg/L	52	68	21	74	
ED093F: Dissolved Major Cations			U.S.					
Calcium	7440-70-2	1	mg/L	3	7	2	<1	
Magnesium	7439-95-4	1	mg/L	7	13	3	5	
Sodium	7440-23-5	1	mg/L	44	57	30	71	
Potassium	7440-09-7	1	mg/L	<1	1	2	2	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.13	0.04	0.09	0.17	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	0.0004	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	0.004	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.006	0.002	
Nickel	7440-02-0	0.001	mg/L	<0.001	0.001	0.008	0.002	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.023	0.137	
Manganese	7439-96-5	0.001	mg/L	0.005	0.004	0.134	0.042	
Molybdenum	7439-98-7	0.001	mg/L	0.001	0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 4 of 4
Work Order	: EB1922363
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan Template

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cli	ent sampli	ng date / time	27-Aug-2019 11:41	27-Aug-2019 11:44	27-Aug-2019 11:50	27-Aug-2019 11:51	
Compound	CAS Number	LOR	Unit	EB1922363-001	EB1922363-002	EB1922363-003	EB1922363-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	- Continued							
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.07	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.1	0.2	<0.1	0.1	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	2.44	3.56	1.46	3.15	
Ø Total Cations		0.01	meq/L	2.64	3.92	1.70	3.55	
Ø Ionic Balance		0.01	%		4.92		6.04	

Work Order	EB1925267	Page	: 1 of 4
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Customer Services EB
Address	:	Address	: 2 Byth Street Stafford QLD Australia 4053
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: Vulcan - 2019010	Date Samples Received	: 25-Sep-2019 15:51
Order number	:	Date Analysis Commenced	26-Sep-2019
C-O-C number	: 4379	Issue Date	02-Oct-2019 12:36
Sampler	: MARY MACELROY, VERONICA CANALES		NATA
Site	: Vulcan L-4		
Quote number	: BN/1234/19		Accreditation No. 825
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cl	ient sampli	ng date / time	25-Sep-2019 10:05	25-Sep-2019 10:09	25-Sep-2019 10:10	25-Sep-2019 10:10	
Compound	CAS Number	LOR	Unit	EB1925267-001	EB1925267-002	EB1925267-003	EB1925267-004	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.45	6.99	5.98	6.45	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	930	251	300	431	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	26	7	5	5	
Total Alkalinity as CaCO3		1	mg/L	26	7	5	5	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	7	8	7	3	
ED041G: Sulfate (Turbidimetric) as S						·	•	
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	107	37	73	74	
		.	ing/E	107	51	73	14	
ED045G: Chloride by Discrete Analys		4		000	44		70	
Chloride	16887-00-6	1	mg/L	222	44	37	76	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	7	2	2	<1	
Magnesium	7439-95-4	1	mg/L	22	6	4	4	
Sodium	7440-23-5	1	mg/L	146	36	49	75	
Potassium	7440-09-7	1	mg/L	1	<1	2	3	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.01	0.26	0.06	0.68	
Antimony	7440-36-0	0.001	mg/L	0.002	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	0.002	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.008	0.002	
Nickel	7440-02-0	0.001	mg/L	0.001	<0.001	0.010	0.003	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.002	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.031	<0.005	
Manganese	7439-96-5	0.001	mg/L	0.009	0.003	0.229	0.048	
Molybdenum	7439-98-7	0.001	mg/L	0.008	0.002	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page : 4 of 4 Work Order : EB1925267 Client : RGS ENVIRONMENTAL PTY LTD Project : Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cli	ient sampli	ng date / time	25-Sep-2019 10:05	25-Sep-2019 10:09	25-Sep-2019 10:10	25-Sep-2019 10:10	
Compound	CAS Number	LOR	Unit	EB1925267-001	EB1925267-002	EB1925267-003	EB1925267-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	S - Continued							
Boron	7440-42-8	0.05	mg/L	0.06	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	<0.05	0.13	0.05	0.20	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.5	0.2	<0.1	0.2	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	9.01	2.15	2.66	3.78	
Ø Total Cations		0.01	meq/L	8.54	2.16	2.61	3.67	
Ø Ionic Balance		0.01	%	2.70			1.56	

Work Order	EB1927981	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MS VERONICA CANALES	Contact	: Customer Services EB
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: Vulcan Template	Date Samples Received	: 22-Oct-2019 16:15
Order number	:	Date Analysis Commenced	: 22-Oct-2019
C-O-C number	: 5170	Issue Date	: 29-Oct-2019 13:14
Sampler	: VERONICA CANALES		Iac-MRA NATA
Site	: Vulcan- L5		
Quote number	: BN/1234/19		Accreditation No. 825
No. of samples received	: 4		Accreditation No. 825
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	CI	ient sampli	ng date / time	22-Oct-2019 14:14	22-Oct-2019 14:15	22-Oct-2019 14:16	22-Oct-2019 14:19	
Compound	CAS Number	LOR	Unit	EB1927981-001	EB1927981-002	EB1927981-003	EB1927981-004	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.15	6.85	6.11	6.43	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1150	150	208	310	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	25	8	5	5	
Total Alkalinity as CaCO3		1	mg/L	25	8	5	5	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	2	<1	2	2	
ED041G: Sulfate (Turbidimetric) as S0			, , , , , , , , , , , , , , , , , , ,					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	95	22	51	53	
			<u>9</u> / _			.		
ED045G: Chloride by Discrete Analys Chloride		1	mg/L	318	23	21	48	
	16887-00-6	I.	ilig/L	510	23	21	40	
ED093F: Dissolved Major Cations		4	ma # //	40	•	•	-14	
Calcium	7440-70-2	1	mg/L	12	2	2	<1	
Magnesium	7439-95-4	1	mg/L	38	4	3	3	
Sodium	7440-23-5	1	mg/L	142	18	31	51	
Potassium	7440-09-7	1	mg/L	<1	<1	2	2	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.22	0.24	0.73	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	0.001	0.002	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	0.021	0.004	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.002	<0.001	<0.001	<0.001	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.004	0.002	
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001	0.004	0.003	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.014	<0.005	
Manganese	7439-96-5	0.001	mg/L	0.024	0.003	0.121	0.034	
Molybdenum	7439-98-7	0.001	mg/L	0.005	<0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 4 of 4
Work Order	: EB1927981
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan Template

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cli	ent sampli	ng date / time	22-Oct-2019 14:14	22-Oct-2019 14:15	22-Oct-2019 14:16	22-Oct-2019 14:19	
Compound	CAS Number	LOR	Unit	EB1927981-001	EB1927981-002	EB1927981-003	EB1927981-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	- Continued							
Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	0.16	0.14	<0.05	<0.05	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.3	0.1	<0.1	0.1	
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	11.4	1.27	1.75	2.56	
Ø Total Cations		0.01	meq/L	9.90	1.21	1.75	2.52	
Ø Ionic Balance		0.01	%	7.24				

Work Order	: EB1931659	Page	: 1 of 4	
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane	9
Contact	: MARY MACELROY	Contact	: Customer Services EB	
Address	: Level 7 380 QUEEN STREET	Address	: 2 Byth Street Stafford QLD Aust	ralia 4053
	BRISBANE QLD, AUSTRALIA 4000			
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222	
Project	: Vulcan - 2019010	Date Samples Received	: 26-Nov-2019 17:07	autiture.
Order number	:	Date Analysis Commenced	: 27-Nov-2019	
C-O-C number	: 6210	Issue Date	: 04-Dec-2019 09:59	NATA
Sampler	: VERONICA CANALES		1	AC-MRA NATA
Site	: Vulcan 2019010 leach 7			
Quote number	: BN/1234/19			Accreditation No. 825
No. of samples received	: 4			Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cl	ient sampli	ng date / time	26-Nov-2019 15:44	26-Nov-2019 15:52	26-Nov-2019 15:56	26-Nov-2019 15:57	
Compound	CAS Number	LOR	Unit	EB1931659-001	EB1931659-002	EB1931659-003	EB1931659-004	
			-	Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.85	7.17	6.35	6.62	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1750	119	181	409	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	47	6	5	4	
Total Alkalinity as CaCO3		1	mg/L	47	6	5	4	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	5	<1	1	1	
-								
ED041G: Sulfate (Turbidimetric) as So Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	186	18	47	78	
		•	ilig/E	100	10	77	70	
D045G: Chloride by Discrete Analys		4		450	40	45	07	
Chloride	16887-00-6	1	mg/L	456	18	15	67	
D093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	16	2	2	<1	
Magnesium	7439-95-4	1	mg/L	49	3	2	4	
Sodium	7440-23-5	1	mg/L	258	15	27	70	
Potassium	7440-09-7	1	mg/L	2	<1	2	3	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.22	0.20	0.91	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	0.006	0.004	0.003	0.003	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.002	<0.001	<0.001	<0.001	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.002	0.002	
Nickel	7440-02-0	0.001	mg/L	0.002	<0.001	0.003	0.002	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.002	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.008	0.008	
Manganese	7439-96-5	0.001	mg/L	0.035	0.002	0.098	0.040	
Molybdenum	7439-98-7	0.001	mg/L	0.012	0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 4 of 4
Work Order	: EB1931659
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-1	KLC-2	KLC-3	KLC-4	
	Cli	ent sampli	ng date / time	26-Nov-2019 15:44	26-Nov-2019 15:52	26-Nov-2019 15:56	26-Nov-2019 15:57	
Compound	CAS Number	LOR	Unit	EB1931659-001	EB1931659-002	EB1931659-003	EB1931659-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	- Continued							
Boron	7440-42-8	0.05	mg/L	0.09	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	<0.05	0.09	0.08	0.27	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.7	0.1	<0.1	0.2	
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	17.7	1.00	1.50	3.59	
Ø Total Cations		0.01	meq/L	16.1	1.00	1.49	3.45	
Ø Ionic Balance		0.01	%	4.65			2.03	

Work Order	EB1932471	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MARY MACELROY	Contact	: Customer Services EB
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61-7-3243 7222
Project	: Vulcan - 2019010	Date Samples Received	: 03-Dec-2019 16:14
Order number	:-	Date Analysis Commenced	: 03-Dec-2019
C-O-C number	: 6459	Issue Date	: 11-Dec-2019 10:23
Sampler	: ALAN ROBERTSON, VERONICA CANALES		III-Dec-2019 10:23
Site	: 2019010 -Vulcan 5-6 L1		
Quote number	: BN/1234/19		The Column
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	03-Dec-2019 11:00	03-Dec-2019 11:02	 	
Compound	CAS Number	LOR	Unit	EB1932471-005	EB1932471-006	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.35	7.01	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	833	151	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	32	12	 	
Total Alkalinity as CaCO3		1	mg/L	32	12	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	3	1	 	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	150	32	 	
ED045G: Chloride by Discrete Analyse							
Chloride	16887-00-6	1	mg/L	158	19	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	35	2	 	
Magnesium	7439-95-4	1	mg/L	31	2	 	
Sodium	7440-23-5	1	mg/L	70	23	 	
Potassium	7440-09-7	1	mg/L	5	1	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.02	0.09	 	
Antimony	7440-36-0	0.001	mg/L	0.002	<0.001	 	
Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0021	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.006	0.002	 	
Cobalt	7440-48-4	0.001	mg/L	0.070	0.006	 	
Nickel	7440-02-0	0.001	mg/L	0.046	0.005	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.067	<0.005	 	
Manganese	7439-96-5	0.001	mg/L	0.016	0.002	 	
Molybdenum	7439-98-7	0.001	mg/L	0.050	0.036	 	
Selenium	7782-49-2	0.01	mg/L	0.05	0.02	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Page	: 4 of 4
Work Order	: EB1932471
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	03-Dec-2019 11:00	03-Dec-2019 11:02	 	
Compound	CAS Number	LOR	Unit	EB1932471-005	EB1932471-006	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	- Continued						
Boron	7440-42-8	0.05	mg/L	0.11	<0.05	 	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.2	0.4	 	
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	8.22	1.44	 	
Ø Total Cations		0.01	meq/L	7.47	1.29	 	
Ø Ionic Balance		0.01	%	4.77		 	

Work Order	EB1934601	Page	: 1 of 4	
Client	: RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Bri	isbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich	
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD	0 Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109			
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616	
Project	: Vulcan - 2019010	Date Samples Received	: 24-Dec-2019 11:30	awitting
Order number	:-	Date Analysis Commenced	: 27-Dec-2019	
C-O-C number	: 7040	Issue Date	: 10-Jan-2020 17:28	
Sampler	: VERONICA CANALES			Hac-MRA NATA
Site	: Vulcan L-7			
Quote number	: BN/1234/19			According to a
No. of samples received	: 4			Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cl	ient sampli	ng date / time	24-Dec-2019 09:26	24-Dec-2019 09:29	24-Dec-2019 09:30	24-Dec-2019 09:30	
Compound	CAS Number	LOR	Unit	EB1934601-001	EB1934601-002	EB1934601-003	EB1934601-004	
				Result	Result	Result	Result	
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.03	7.39	6.35	6.70	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	462	94	148	384	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	80	11	5	8	
Total Alkalinity as CaCO3		1	mg/L	80	11	5	8	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	<1	2	1	3	
ED041G: Sulfate (Turbidimetric) as S0							-	
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	47	12	41	72	
ED045G: Chloride by Discrete Analys Chloride		1	mg/L	64	13	10	56	
	16887-00-6	I.	mg/L	04	15	10	50	
ED093F: Dissolved Major Cations		4		<u>^</u>	-14	4	- 11	
Calcium	7440-70-2	1	mg/L	3	<1	1	<1	
Magnesium	7439-95-4	1	mg/L	8	2	2	2	
Sodium	7440-23-5	1	mg/L	91	15	24	71	
Potassium	7440-09-7	1	mg/L	1	<1	2	3	
G020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.77	0.29	0.28	1.13	
Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Arsenic	7440-38-2	0.001	mg/L	0.004	<0.001	<0.001	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	<0.001	0.001	
Copper	7440-50-8	0.001	mg/L	0.005	<0.001	<0.001	0.002	
Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.001	0.001	
Nickel	7440-02-0	0.001	mg/L	0.001	<0.001	0.002	0.003	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.003	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.005	0.005	
Manganese	7439-96-5	0.001	mg/L	0.003	0.003	0.058	0.033	
Molybdenum	7439-98-7	0.001	mg/L	0.013	<0.001	<0.001	<0.001	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	

Page	: 4 of 4
Work Order	: EB1934601
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-1	KLC-2	KLC-3	KLC-4	
	Cli	ent sampli	ng date / time	24-Dec-2019 09:26	24-Dec-2019 09:29	24-Dec-2019 09:30	24-Dec-2019 09:30	
Compound	CAS Number	LOR	Unit	EB1934601-001	EB1934601-002	EB1934601-003	EB1934601-004	
				Result	Result	Result	Result	
EG020F: Dissolved Metals by ICP-MS	- Continued							
Boron	7440-42-8	0.05	mg/L	0.14	<0.05	<0.05	<0.05	
Iron	7439-89-6	0.05	mg/L	0.10	0.09	0.09	0.42	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.9	0.1	<0.1	0.2	
EN055: Ionic Balance								
ø Total Anions		0.01	meq/L	4.38	0.84	1.24	3.24	
Ø Total Cations		0.01	meq/L	4.79	0.82	1.31	3.33	
Ø Ionic Balance		0.01	%	4.46			1.39	

Work Order	EB2000205	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: Vulcan - 2019010	Date Samples Received	: 07-Jan-2020 17:10
Order number	:	Date Analysis Commenced	: 08-Jan-2020
C-O-C number	: 7144	Issue Date	: 15-Jan-2020 09:53
Sampler	: CARSTEN EMRICH		
Site	: 2019010- Vulcan Saraji West (5&6) L2 January 2020		
Quote number	: BN/1234/19		
No. of samples received	: 2		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	CI	ient sampli	ng date / time	07-Jan-2020 13:32	07-Jan-2020 13:32	 	
Compound	CAS Number	LOR	Unit	EB2000205-001	EB2000205-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.69	6.90	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	504	205	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	14	 	
Total Alkalinity as CaCO3		1	mg/L	9	14	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	1	1	 	
ED041G: Sulfate (Turbidimetric) as SO	O4 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	143	52	 	
ED045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	1	mg/L	40	14	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	22	2	 	
Magnesium	7439-95-4	1	mg/L	18	2	 	
Sodium	7440-23-5	1	mg/L	45	33	 	
Potassium	7440-09-7	1	mg/L	5	2	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.14	 	
Antimony	7440-36-0	0.001	mg/L	0.001	0.001	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0015	0.0002	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.006	0.003	 	
Cobalt	7440-48-4	0.001	mg/L	0.099	0.016	 	
Nickel	7440-02-0	0.001	mg/L	0.072	0.015	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.098	0.009	 	
Manganese	7439-96-5	0.001	mg/L	0.023	0.004	 	
Molybdenum	7439-98-7	0.001	mg/L	0.013	0.046	 	
Selenium	7782-49-2	0.01	mg/L	0.02	0.03	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Page	: 4 of 4
Work Order	: EB2000205
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	07-Jan-2020 13:32	07-Jan-2020 13:32	 	
Compound	CAS Number	LOR	Unit	EB2000205-001	EB2000205-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	- Continued						
Boron	7440-42-8	0.05	mg/L	0.09	<0.05	 	
Iron	7439-89-6	0.05	mg/L	<0.05	0.07	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.6	0.5	 	
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	4.28	1.76	 	
Ø Total Cations		0.01	meq/L	4.66	1.75	 	
Ø Ionic Balance		0.01	%	4.24		 	

Work Order	EB2002875	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO Box 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: Vulcan - 2019010	Date Samples Received	: 04-Feb-2020 16:27
Order number	:-	Date Analysis Commenced	: 05-Feb-2020
C-O-C number	: 7933	Issue Date	: 12-Feb-2020 14:55
Sampler	: CARSTEN EMRICH		IZ-Feb-2020 14:55
Site	: 2019010- Vulcan Saraji West (5&6) L3		
Quote number	: BN/1234/19		Apprediction No. 22
No. of samples received	: 2		Accreditation No. 82 Accredited for compliance wit
No. of samples analysed	: 2		ISO/IEC 17025 - Testin

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Signatories	Position	Accreditation Category
Dave Gitsham	Metals Instrument Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	04-Feb-2020 13:48	04-Feb-2020 13:48	 	
Compound	CAS Number	LOR	Unit	EB2002875-001	EB2002875-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	5.77	6.66	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	980	263	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	14	23	 	
Total Alkalinity as CaCO3		1	mg/L	14	23	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	5	2	 	
ED041G: Sulfate (Turbidimetric) as SC	O4 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	374	78	 	
ED045G: Chloride by Discrete Analyse	er						
Chloride	16887-00-6	1	mg/L	56	13	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	50	2	 	
Magnesium	7439-95-4	1	mg/L	42	4	 	
Sodium	7440-23-5	1	mg/L	73	42	 	
Potassium	7440-09-7	1	mg/L	8	2	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.04	0.33	 	
Antimony	7440-36-0	0.001	mg/L	0.001	0.002	 	
Arsenic	7440-38-2	0.001	mg/L	0.001	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0068	0.0003	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.020	0.005	 	
Cobalt	7440-48-4	0.001	mg/L	0.423	0.023	 	
Nickel	7440-02-0	0.001	mg/L	0.271	0.023	 	
Lead	7439-92-1	0.001	mg/L	0.020	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.554	0.016	 	
Manganese	7439-96-5	0.001	mg/L	0.108	0.004	 	
Molybdenum	7439-98-7	0.001	mg/L	0.010	0.052	 	
Selenium	7782-49-2	0.01	mg/L	0.05	0.04	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Page	: 4 of 4
Work Order	: EB2002875
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	04-Feb-2020 13:48	04-Feb-2020 13:48	 	
Compound	CAS Number	LOR	Unit	EB2002875-001	EB2002875-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	S - Continued						
Boron	7440-42-8	0.05	mg/L	0.16	0.13	 	
Iron	7439-89-6	0.05	mg/L	0.10	0.15	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.5	0.9	 	
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	9.65	2.45	 	
Ø Total Cations		0.01	meq/L	9.33	2.31	 	
Ø Ionic Balance		0.01	%	1.66		 	

CERTIFICATE OF ANALYSIS

Work Order	EB2005904	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: Vulcan - 2019010	Date Samples Received	: 03-Mar-2020 16:59
Order number	:-	Date Analysis Commenced	: 07-Mar-2020
C-O-C number	: 7143	Issue Date	11-Mar-2020 10:06
Sampler	: VERONICA CANALES		
Site	: 2019010- Vulcan Saraji West (5&6) L4		
Quote number	: BN/1234/19		
No. of samples received	: 2		Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	03-Mar-2020 11:49	03-Mar-2020 11:49	 	
Compound	CAS Number	LOR	Unit	EB2005904-001	EB2005904-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	5.59	6.68	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	1060	275	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	3	18	 	
Total Alkalinity as CaCO3		1	mg/L	3	18	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	6	2	 	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	487	86	 	
ED045G: Chloride by Discrete Analyse	er						
Chloride	16887-00-6	1	mg/L	36	11	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	64	3	 	
Magnesium	7439-95-4	1	mg/L	54	4	 	
Sodium	7440-23-5	1	mg/L	86	44	 	
Potassium	7440-09-7	1	mg/L	8	2	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.01	0.16	 	
Antimony	7440-36-0	0.001	mg/L	<0.001	0.001	 	
Arsenic	7440-38-2	0.001	mg/L	0.001	0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0088	0.0004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.025	0.006	 	
Cobalt	7440-48-4	0.001	mg/L	0.552	0.021	 	
Nickel	7440-02-0	0.001	mg/L	0.352	0.024	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.971	0.026	 	
Manganese	7439-96-5	0.001	mg/L	0.198	0.006	 	
Molybdenum	7439-98-7	0.001	mg/L	0.007	0.058	 	
Selenium	7782-49-2	0.01	mg/L	0.05	0.04	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Page	: 4 of 4
Work Order	: EB2005904
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	03-Mar-2020 11:49	03-Mar-2020 11:49	 	
Compound	CAS Number	LOR	Unit	EB2005904-001	EB2005904-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	- Continued						
Boron	7440-42-8	0.05	mg/L	0.18	0.18	 	
Iron	7439-89-6	0.05	mg/L	<0.05	0.06	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.6	 	
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	11.2	2.46	 	
Ø Total Cations		0.01	meq/L	11.6	2.44	 	
Ø Ionic Balance		0.01	%	1.62		 	

CERTIFICATE OF ANALYSIS

Work Order	EB2009682	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	: Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: Vulcan - 2019010	Date Samples Received	: 07-Apr-2020 17:00
Order number	:-	Date Analysis Commenced	: 08-Apr-2020
C-O-C number	: 10041	Issue Date	: 17-Apr-2020 11:48
Sampler	: VERONICA CANALES		
Site	: Vulcan 5 & 6 L5		
Quote number	: BN/1234/19		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			KLC-5	KLC-6	 		
	Cl	ient sampli	ng date / time	07-Apr-2020 14:28	07-Apr-2020 14:29	 	
Compound	CAS Number	LOR	Unit	EB2009682-001	EB2009682-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.03	6.98	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	660	225	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	6	17	 	
Total Alkalinity as CaCO3		1	mg/L	6	17	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	5	2	 	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	291	77	 	
ED045G: Chloride by Discrete Analyse							
Chloride	16887-00-6	1	mg/L	17	8	 	
ED093F: Dissolved Major Cations			<u> </u>				
Calcium	7440-70-2	1	mg/L	31	2	 	
Magnesium	7439-95-4	1	mg/L	30	3	 	
Sodium	7440-23-5	1	mg/L	51	36	 	
Potassium	7440-09-7	1	mg/L	6	2	 	
EG020F: Dissolved Metals by ICP-MS			_				1
Aluminium	7429-90-5	0.01	mg/L	0.05	0.24	 	
Antimony	7440-36-0	0.001	mg/L	<0.001	0.002	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0064	0.0004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.029	0.009	 	
Cobalt	7440-48-4	0.001	mg/L	0.346	0.020	 	
Nickel	7440-02-0	0.001	mg/L	0.233	0.020	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.777	0.036	 	
Manganese	7439-96-5	0.001	mg/L	0.195	0.010	 	
Molybdenum	7439-98-7	0.001	mg/L	0.006	0.035	 	
Selenium	7782-49-2	0.01	mg/L	0.04	0.03	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Page	: 4 of 4
Work Order	: EB2009682
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	07-Apr-2020 14:28	07-Apr-2020 14:29	 	
Compound	CAS Number	LOR	Unit	EB2009682-001	EB2009682-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	S - Continued						
Boron	7440-42-8	0.05	mg/L	0.15	0.06	 	
Iron	7439-89-6	0.05	mg/L	0.07	<0.05	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.5	0.8	 	
EN055: Ionic Balance							
ø Total Anions		0.01	meq/L	6.66	2.17	 	
Ø Total Cations		0.01	meq/L	6.39	1.96	 	
ø Ionic Balance		0.01	%	2.07		 	

CERTIFICATE OF ANALYSIS

Work Order	EB2011988	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: Vulcan - 2019010	Date Samples Received	: 06-May-2020 16:05
Order number	:-	Date Analysis Commenced	: 07-May-2020
C-O-C number	: 10786	Issue Date	12-May-2020 13:30
Sampler	: VERONICA CANALES		
Site	: 2019010_Vulcan_L7		
Quote number	: BN/1234/19		Accreditation No. 825
No. of samples received	: 2		Accreditation No. 825
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Ionic Balance out of acceptable limits due to analytes not quantified in this report.

Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	06-May-2020 08:26	06-May-2020 08:27	 	
Compound	CAS Number	LOR	Unit	EB2011988-001	EB2011988-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.58	7.15	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	504	215	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	8	17	 	
Total Alkalinity as CaCO3		1	mg/L	8	17	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	2	<1	 	
ED041G: Sulfate (Turbidimetric) as S0	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	215	69	 	
ED045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	1	mg/L	8	6	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	26	2	 	
Magnesium	7439-95-4	1	mg/L	28	4	 	
Sodium	7440-23-5	1	mg/L	39	39	 	
Potassium	7440-09-7	1	mg/L	5	2	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.32	 	
Antimony	7440-36-0	0.001	mg/L	<0.001	0.002	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0058	0.0004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.018	0.005	 	
Cobalt	7440-48-4	0.001	mg/L	0.320	0.019	 	
Nickel	7440-02-0	0.001	mg/L	0.221	0.018	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.862	0.040	 	
Manganese	7439-96-5	0.001	mg/L	0.202	0.007	 	
Molybdenum	7439-98-7	0.001	mg/L	0.005	0.054	 	
Selenium	7782-49-2	0.01	mg/L	0.03	0.03	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-5	KLC-6	 	
	Cl	ient samplii	ng date / time	06-May-2020 08:26	06-May-2020 08:27	 	
Compound	CAS Number	LOR	Unit	EB2011988-001	EB2011988-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	S - Continued						
Boron	7440-42-8	0.05	mg/L	0.06	<0.05	 	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.7	 	
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	4.86	1.94	 	
Ø Total Cations		0.01	meq/L	5.43	2.18	 	
Ø Ionic Balance		0.01	%	5.48		 	

CERTIFICATE OF ANALYSIS

Work Order	EB2014636	Page	: 1 of 4
Client	RGS ENVIRONMENTAL PTY LTD	Laboratory	Environmental Division Brisbane
Contact	: MR ALAN ROBERTSON	Contact	: Carsten Emrich
Address	: PO BOX 3091	Address	: 2 Byth Street Stafford QLD Australia 4053
	SUNNYBANK SOUTH QLD, AUSTRALIA 4109		
Telephone	: +61 07 3344 1222	Telephone	: +61 7 3552 8616
Project	: Vulcan - 2019010	Date Samples Received	: 02-Jun-2020 16:45
Order number	:-	Date Analysis Commenced	: 03-Jun-2020
C-O-C number	: 11564	Issue Date	: 09-Jun-2020 09:36
Sampler	: VERONICA CANALES		
Site	: 2019010_Vulcan_L7-1		
Quote number	: BN/1234/19		Accreditation No. 825
No. of samples received	: 2		Accredited for compliance with
No. of samples analysed	: 2		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	02-Jun-2020 10:06	02-Jun-2020 10:07	 	
Compound	CAS Number	LOR	Unit	EB2014636-001	EB2014636-002	 	
				Result	Result	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.48	7.28	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	426	173	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	4	21	 	
Total Alkalinity as CaCO3		1	mg/L	4	21	 	
ED038A: Acidity							
Acidity as CaCO3		1	mg/L	2	<1	 	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	180	48	 	
ED045G: Chloride by Discrete Analyse	er						
Chloride	16887-00-6	1	mg/L	6	4	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	21	2	 	
Magnesium	7439-95-4	1	mg/L	21	3	 	
Sodium	7440-23-5	1	mg/L	26	27	 	
Potassium	7440-09-7	1	mg/L	4	2	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.33	 	
Antimony	7440-36-0	0.001	mg/L	<0.001	0.002	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0052	0.0004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.016	0.007	 	
Cobalt	7440-48-4	0.001	mg/L	0.262	0.016	 	
Nickel	7440-02-0	0.001	mg/L	0.184	0.014	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.796	0.038	 	
Manganese	7439-96-5	0.001	mg/L	0.174	0.007	 	
Molybdenum	7439-98-7	0.001	mg/L	0.002	0.027	 	
Selenium	7782-49-2	0.01	mg/L	0.02	0.02	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	

Page	: 4 of 4
Work Order	: EB2014636
Client	: RGS ENVIRONMENTAL PTY LTD
Project	: Vulcan - 2019010

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID			KLC-5	KLC-6	 	
	Cl	ient sampli	ng date / time	02-Jun-2020 10:06	02-Jun-2020 10:07	 	
Compound	CAS Number	LOR	Unit	EB2014636-001	EB2014636-002	 	
				Result	Result	 	
EG020F: Dissolved Metals by ICP-MS	- Continued						
Boron	7440-42-8	0.05	mg/L	0.08	0.05	 	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.4	0.6	 	
EN055: Ionic Balance							
Ø Total Anions		0.01	meq/L	4.00	1.53	 	
Ø Total Cations		0.01	meq/L	4.01	1.57	 	
ø lonic Balance		0.01	%	0.16		 	

Attachment E Risk Assessment for the Ex-Pit Emplacement of Coal Rejects

Descriptions of Likelihood Rankings

Likelihood	Description
Rare (1)	Unlikely to occur in a lifetime; or very unlikely to occur; or no known occurrences in broader worldwide community.
Unlikely (2)	Could occur about once during a lifetime; or more likely not to occur than to occur; or has occurred at least once in the broader worldwide industry.
Possible (3)	Could occur more than once during a lifetime; or as likely to occur as not to occur; or has occurred at least once in the mining/commodities trading industry.
Likely (4)	May occur about once per year; or more likely to occur than not occur; or has occurred at least once on a mine site in the Bowen Basin.
Almost Certain (5)	May occur several times per year; or expected to occur; or has occurred several times on a mine site in the Bowen Basin.

Descriptions of Consequence Rankings

Consequence	Description
Negligible (1)	No lasting impact; requires minor or no remediation; minor management intervention may be required.
Minor (2)	Short-term impact; requires minor remediation or intervention.
Moderate (3)	Medium-term (<2 years) impact; requires moderate intervention.
Major (4)	Long-term (2-10 years) impact; major remediation measures required.
Catastrophic (5)	Unconfined and widespread environmental damage; impacts reaching into surrounding areas; major remediation measures required.

Risk Rating Matrix

RISK CALCULATOR (Risk Rating = Consequences x Likelihood)									
	CONSEQUENCE								
LIKELIHOOD	Negligible (1)	Minor (2)	Moderate (3)	Major (4)	Catastrophic (5)				
Rare (1)	L (1)	L (3)	M (6)	M (10)	H (15)				
Unlikely (2)	L (2)	L (5)	M (9)	H (14)	E (19)				
Possible (3)	L (4)	M (8)	H (13)	E (18)	E (22)				
Likely (4)	M (7)	H (12)	H (17)	E (21)	E (24)				
Almost Certain (5)	M (11)	H (16)	E (20)	E (23)	E (25)				

	Impact		heren	t Risk		Residual Risk		
Hazard			Likelihood	Risk Rating	Risk Control Measures	Consequence	Likelihood	Risk Rating
Loss of acidic, saline, and/or metalliferous drainage to the surrounding environment.	Increased acidity, increased salinity, and/or increased dissolved metal/metalloid concentrations in receiving groundwater or surface water.	3	2	М (9)	Engineering – Any identified PAF materials with be placed in the central core of the ex-pit emplacement facility and encapsulated with at least 5 m of NAF waste rock material ⁶ . The PAF materials will be placed at a location that allows any seepage to be directed toward the open pits. PAF materials will be paddock dumped and traffic compacted to reduce the ingress of oxygen and water. Drains to catch seepage from selected locations at the ex-pit emplacements will be created to direct seepage back into the pits. Administration - Seepage from the ex- pit dumps will be monitored as part of the site Water Management Plan.	2	1	L (3)
Uncovering of previously covered PAF materials during landform reshaping.	Reduced stability of the final landform due to erosion and sediment loss. Downstream/downgradient areas impacted by sediment load. The inability to establish, or reduced performance of, vegetation to be established on the surface of the final landform.	3	2	M (9)	 Isolation - Tailings and rejects will not be placed closer than 5 m to the external batters of the ex-pit dumps and under at least 5m of NAF waste rock⁶. Administration - The extents of dumped coal tailings and rejects within the ex-pit waste rock dumps will be surveyed and recorded. 	2	1	L (3)

Table E1: Risk Assessment for the Ex-Pit Emplacement of Coal Rejects

	Impact		heren	t Risk	Risk Control Measures	Residual Risk		
Hazard			Likelihood	Risk Rating		Consequence	Likelihood	Risk Rating
Poor mixing of coal reject and spoil.	Altered geotechnical properties (reduced bearing capacity) leading to landform instability.	3	3	Н (13)	Administration - The timing of dumping will be scheduled to ensure that both waste rock and coal rejects are adequately combined when emplaced in the ex-pit dumps. Visual inspection of the co- disposed material in ex-pit dumps will be undertaken periodically to confirm the adequate mixture of materials.	3	1	M (6)
Drying process at the CHPP is less effective than planned.	Altered material handling characteristics. Altered geotechnical properties leading to landform instablility.	3	3	Н (13)	Administration - Waste materials from the CHPP will be periodically assessed to ensure the materials have moisture contents within the appropriate bounds.	3	1	M (6)
Coal rejects exposed at the surface of the emplacements	Reduced stability of the final landform due to erosion and sediment loss. Downstream/downgradient areas impacted by sediment load.	3	3	H (13)	Isolation – Coal Rejects will not be placed closer than 5m to the external surface of the ex-pit dumps and under at least 5 m of NAF waste rock ⁶ . Administration - The extents of dumped coal rejects within the ex-pit waste rock dumps will be surveyed and recorded.	2	1	L (3)

	Impact	Inherent Risk				Residual Risk		
Hazard		Consequence	Likelihood	Risk Rating	Risk Control Measures	Consequence	Likelihood	Risk Rating
Capillary rise of acidic, saline, and/or metalliferous drainage generated by PAF materials.	The inability to establish, or reduced performance of, vegetation to be established on the surface of the final landform.	3	3	Н (13)	Isolation - Tailings and rejects will not be placed closer than 5 m to the external batters of the ex-pit dumps and under at least 5 m of NAF waste rock below the cover of the final landform to create a capillary break ⁶ .	2	1	L (3)
Saturation of exposed PAF materials during rain events.	Generation of acidic, saline, and/or metalliferous drainage from the tailings and rejects materials. Altered geotechnical properties.	3	3	M (9)	Engineering - The coal rejects and waste rock will be traffic compacted after paddock dumping and covered with NAF waste rock to further reduce the size of the pore spaces in the dump, reducing the ingress of air and water.	2	1	L (3)
Drying of uncovered, unconsolidated PAF materials generating dust.	Contamination of downwind areas by PAF material dust.	2	1	L (3)	Isolation – PAF materials will not be placed closer than 5 m to the surface of the ex-pit emplacement and will be covered by at least 5 m of NAF waste rock ⁶ . Engineering - PAF materials will be traffic compacted as soon as possible after paddock dumping	1	1	L (1)

MINE WASTE AND WATER MANAGEMENT